Ontology type: schema:ScholarlyArticle
1991-07
AUTHORSPiermarco Cannarsa, Fausto Gozzi, Halil Mete Soner
ABSTRACTWe study a Hamilton-Jacobi equation in infinite dimensions arising in optimal control theory for problems involving both exit times and state-space constraints. The corresponding boundary conditions for the Hamilton-Jacobi equation, of mixed nature, have been derived and investigated in [19], [2], [5], and [15] in the finite-dimensional case. We obtain a uniqueness result for viscosity solutions of such a problem and then prove the existence of a solution by showing that the value function is continuous. More... »
PAGES197-220
http://scigraph.springernature.com/pub.10.1007/bf01447742
DOIhttp://dx.doi.org/10.1007/bf01447742
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1033299840
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"Dipartimento di Matematica, Via F. Buonarroti 2, 57127, Pisa, Italy"
],
"type": "Organization"
},
"familyName": "Cannarsa",
"givenName": "Piermarco",
"id": "sg:person.014257010655.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Scuola Normale Superiore di Pisa",
"id": "https://www.grid.ac/institutes/grid.6093.c",
"name": [
"Scuola Normale Superiore, 56126, Pisa, Italy"
],
"type": "Organization"
},
"familyName": "Gozzi",
"givenName": "Fausto",
"id": "sg:person.011146033103.38",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011146033103.38"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Carnegie Mellon University",
"id": "https://www.grid.ac/institutes/grid.147455.6",
"name": [
"Department of Mathematics, Carnegie-Mellon University, 15213, Pittsburgh, PA, USA"
],
"type": "Organization"
},
"familyName": "Soner",
"givenName": "Halil Mete",
"id": "sg:person.015237045665.95",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015237045665.95"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1090/s0002-9947-1959-0110078-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007367944"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9947-1984-0732102-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009454689"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0022-1236(86)90005-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019729284"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02346162",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028786880",
"https://doi.org/10.1007/bf02346162"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02346162",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028786880",
"https://doi.org/10.1007/bf02346162"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9947-1983-0690039-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031839902"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0022-1236(85)90011-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046058148"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0022-1236(86)90026-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049289910"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/0324030",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062843874"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/0324032",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062843876"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/0325068",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062843992"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/0326063",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062844075"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1051/m2an/1987210405571",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083426931"
],
"type": "CreativeWork"
}
],
"datePublished": "1991-07",
"datePublishedReg": "1991-07-01",
"description": "We study a Hamilton-Jacobi equation in infinite dimensions arising in optimal control theory for problems involving both exit times and state-space constraints. The corresponding boundary conditions for the Hamilton-Jacobi equation, of mixed nature, have been derived and investigated in [19], [2], [5], and [15] in the finite-dimensional case. We obtain a uniqueness result for viscosity solutions of such a problem and then prove the existence of a solution by showing that the value function is continuous.",
"genre": "research_article",
"id": "sg:pub.10.1007/bf01447742",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1120592",
"issn": [
"0095-4616",
"1432-0606"
],
"name": "Applied Mathematics & Optimization",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "24"
}
],
"name": "A boundary-value problem for Hamilton-Jacobi equations in hilbert spaces",
"pagination": "197-220",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"9ea2a0bfdf5fde50b3498ba186ad949a2e2a30e8e48566d1079aaf8d0633a486"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf01447742"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1033299840"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf01447742",
"https://app.dimensions.ai/details/publication/pub.1033299840"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T13:36",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46777_00000001.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007/BF01447742"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01447742'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01447742'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01447742'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01447742'
This table displays all metadata directly associated to this object as RDF triples.
117 TRIPLES
21 PREDICATES
39 URIs
19 LITERALS
7 BLANK NODES