Numerical computation of neighboring optimum feedback control schemes in real-time View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-03

AUTHORS

Hans Josef Pesch

ABSTRACT

A modification of the theory of neighboring extremals is presented which leads to a new formulation of a linear boundary value problem for the perturbation of the state and adjoint variables around a reference trajectory. On the basis of the multiple shooting algorithm, a numerical method for stable and efficient computation of perturbation feedback schemes is developed. This method is then applied to guidance problems in astronautics. Using as much stored a priori information about the precalculated flight path as possible, the only computational work to be done on the board computer for the computation of a regenerated optimal control program is a single integration of the state differential equations and the solution of a few small systems of linear equations. The amount of computation is small enough to be carried through on modern board computers for real-time. Nevertheless, the controllability region is large enough to compensate realistic flight disturbances, so that optimality is preserved. More... »

PAGES

231-252

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01442556

DOI

http://dx.doi.org/10.1007/bf01442556

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044405249


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Mathematik, Technischen Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D 8000, M\u00fcnchen 2, Federal Republic of Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institut f\u00fcr Mathematik, Technischen Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D 8000, M\u00fcnchen 2, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pesch", 
        "givenName": "Hans Josef", 
        "id": "sg:person.014543723551.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01399607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006803632", 
          "https://doi.org/10.1007/bf01399607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02234758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054501220", 
          "https://doi.org/10.1007/bf02234758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02165234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017748018", 
          "https://doi.org/10.1007/bf02165234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02241732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049544521", 
          "https://doi.org/10.1007/bf02241732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-06867-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008768419", 
          "https://doi.org/10.1007/978-3-662-06867-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1979-03", 
    "datePublishedReg": "1979-03-01", 
    "description": "A modification of the theory of neighboring extremals is presented which leads to a new formulation of a linear boundary value problem for the perturbation of the state and adjoint variables around a reference trajectory. On the basis of the multiple shooting algorithm, a numerical method for stable and efficient computation of perturbation feedback schemes is developed. This method is then applied to guidance problems in astronautics. Using as much stored a priori information about the precalculated flight path as possible, the only computational work to be done on the board computer for the computation of a regenerated optimal control program is a single integration of the state differential equations and the solution of a few small systems of linear equations. The amount of computation is small enough to be carried through on modern board computers for real-time. Nevertheless, the controllability region is large enough to compensate realistic flight disturbances, so that optimality is preserved.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01442556", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1120592", 
        "issn": [
          "0095-4616", 
          "1432-0606"
        ], 
        "name": "Applied Mathematics & Optimization", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "linear boundary value problems", 
      "state differential equations", 
      "feedback control scheme", 
      "optimal control program", 
      "boundary value problem", 
      "multiple shooting algorithm", 
      "adjoint variables", 
      "differential equations", 
      "neighboring extremals", 
      "controllability region", 
      "linear equations", 
      "value problem", 
      "amount of computation", 
      "shooting algorithm", 
      "numerical method", 
      "numerical computations", 
      "efficient computation", 
      "control scheme", 
      "guidance problem", 
      "feedback scheme", 
      "computational work", 
      "flight disturbances", 
      "small systems", 
      "computation", 
      "single integration", 
      "equations", 
      "new formulation", 
      "scheme", 
      "extremals", 
      "problem", 
      "optimality", 
      "board computer", 
      "flight path", 
      "perturbations", 
      "theory", 
      "computer", 
      "algorithm", 
      "formulation", 
      "solution", 
      "variables", 
      "path", 
      "disturbances", 
      "system", 
      "astronautics", 
      "state", 
      "work", 
      "integration", 
      "reference", 
      "basis", 
      "information", 
      "region", 
      "modification", 
      "program", 
      "amount", 
      "control programs", 
      "method"
    ], 
    "name": "Numerical computation of neighboring optimum feedback control schemes in real-time", 
    "pagination": "231-252", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044405249"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01442556"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01442556", 
      "https://app.dimensions.ai/details/publication/pub.1044405249"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_116.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01442556"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01442556'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01442556'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01442556'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01442556'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      21 PREDICATES      87 URIs      73 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01442556 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0103
4 schema:author N9d016555ab844d8aa8b34f8fc6748b25
5 schema:citation sg:pub.10.1007/978-3-662-06867-0
6 sg:pub.10.1007/bf01399607
7 sg:pub.10.1007/bf02165234
8 sg:pub.10.1007/bf02234758
9 sg:pub.10.1007/bf02241732
10 schema:datePublished 1979-03
11 schema:datePublishedReg 1979-03-01
12 schema:description A modification of the theory of neighboring extremals is presented which leads to a new formulation of a linear boundary value problem for the perturbation of the state and adjoint variables around a reference trajectory. On the basis of the multiple shooting algorithm, a numerical method for stable and efficient computation of perturbation feedback schemes is developed. This method is then applied to guidance problems in astronautics. Using as much stored a priori information about the precalculated flight path as possible, the only computational work to be done on the board computer for the computation of a regenerated optimal control program is a single integration of the state differential equations and the solution of a few small systems of linear equations. The amount of computation is small enough to be carried through on modern board computers for real-time. Nevertheless, the controllability region is large enough to compensate realistic flight disturbances, so that optimality is preserved.
13 schema:genre article
14 schema:isAccessibleForFree false
15 schema:isPartOf Nb59db698f62c4289aa62a5b43d8cd169
16 Nc425cf9c46e144adadd4590641cb1b4c
17 sg:journal.1120592
18 schema:keywords adjoint variables
19 algorithm
20 amount
21 amount of computation
22 astronautics
23 basis
24 board computer
25 boundary value problem
26 computation
27 computational work
28 computer
29 control programs
30 control scheme
31 controllability region
32 differential equations
33 disturbances
34 efficient computation
35 equations
36 extremals
37 feedback control scheme
38 feedback scheme
39 flight disturbances
40 flight path
41 formulation
42 guidance problem
43 information
44 integration
45 linear boundary value problems
46 linear equations
47 method
48 modification
49 multiple shooting algorithm
50 neighboring extremals
51 new formulation
52 numerical computations
53 numerical method
54 optimal control program
55 optimality
56 path
57 perturbations
58 problem
59 program
60 reference
61 region
62 scheme
63 shooting algorithm
64 single integration
65 small systems
66 solution
67 state
68 state differential equations
69 system
70 theory
71 value problem
72 variables
73 work
74 schema:name Numerical computation of neighboring optimum feedback control schemes in real-time
75 schema:pagination 231-252
76 schema:productId N08c8869203e84789883aaff76e1892d7
77 Na659be1c5ee74686bbfa88d8cf0fd032
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044405249
79 https://doi.org/10.1007/bf01442556
80 schema:sdDatePublished 2022-10-01T06:26
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N60763804342640c9924b0487eff8df3d
83 schema:url https://doi.org/10.1007/bf01442556
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N08c8869203e84789883aaff76e1892d7 schema:name doi
88 schema:value 10.1007/bf01442556
89 rdf:type schema:PropertyValue
90 N60763804342640c9924b0487eff8df3d schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N9d016555ab844d8aa8b34f8fc6748b25 rdf:first sg:person.014543723551.22
93 rdf:rest rdf:nil
94 Na659be1c5ee74686bbfa88d8cf0fd032 schema:name dimensions_id
95 schema:value pub.1044405249
96 rdf:type schema:PropertyValue
97 Nb59db698f62c4289aa62a5b43d8cd169 schema:issueNumber 1
98 rdf:type schema:PublicationIssue
99 Nc425cf9c46e144adadd4590641cb1b4c schema:volumeNumber 5
100 rdf:type schema:PublicationVolume
101 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
102 schema:name Mathematical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
105 schema:name Applied Mathematics
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
108 schema:name Numerical and Computational Mathematics
109 rdf:type schema:DefinedTerm
110 sg:journal.1120592 schema:issn 0095-4616
111 1432-0606
112 schema:name Applied Mathematics & Optimization
113 schema:publisher Springer Nature
114 rdf:type schema:Periodical
115 sg:person.014543723551.22 schema:affiliation grid-institutes:grid.6936.a
116 schema:familyName Pesch
117 schema:givenName Hans Josef
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22
119 rdf:type schema:Person
120 sg:pub.10.1007/978-3-662-06867-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008768419
121 https://doi.org/10.1007/978-3-662-06867-0
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf01399607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006803632
124 https://doi.org/10.1007/bf01399607
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf02165234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017748018
127 https://doi.org/10.1007/bf02165234
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf02234758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054501220
130 https://doi.org/10.1007/bf02234758
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf02241732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049544521
133 https://doi.org/10.1007/bf02241732
134 rdf:type schema:CreativeWork
135 grid-institutes:grid.6936.a schema:alternateName Institut für Mathematik, Technischen Universität München, Arcisstr. 21, D 8000, München 2, Federal Republic of Germany
136 schema:name Institut für Mathematik, Technischen Universität München, Arcisstr. 21, D 8000, München 2, Federal Republic of Germany
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...