Application of a new selection algorithm to the development of a wide-range equation of state for refrigerant R134a View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-01

AUTHORS

K. B. Shubert, J. F. Ely

ABSTRACT

Refrigerant R134a (1,1.1,2-tetrafuoroethane) is a leading substitute for refrigerant R12. As such, there has been worldwide activity to develop accurate wide-range equations of state for this fluid. In this study. we have developed a new selection algorithm for determining high-accuracy equations of state in the Helmholtz representation. This method combines least-squares regression analysis with simulated annealing optimization. Simulated annealing, unlike stepwise regression, allows for the controlled acceptance of random increases in the objective function. Thus, this procedure produces a computationally efficient selection algorithm which is not susceptible to the function-space local-minima problems present in a purely stepwise regression approach. Two equations are presented in this work and compared against experimental data and other high-accuracy equations of state for R134a. One equation was produced strictly by using stepwise a regression algorithm, while the other was produced using the simulated-annealing selection algorithm. In both cases the temperature dependence of the equations was restricted to have no terms whose exponents were greater than live. More... »

PAGES

101-110

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01438961

DOI

http://dx.doi.org/10.1007/bf01438961

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012525526


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Department of Chemical Engineering and Petroleum Refining, Colorado School of Mines, 804111-1887, Golden, Colorado, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shubert", 
        "givenName": "K. B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Department of Chemical Engineering and Petroleum Refining, Colorado School of Mines, 804111-1887, Golden, Colorado, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ely", 
        "givenName": "J. F.", 
        "id": "sg:person.012014412040.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012014412040.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0021-9614(05)80159-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001824900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00502104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013319670", 
          "https://doi.org/10.1007/bf00502104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00502104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013319670", 
          "https://doi.org/10.1007/bf00502104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-3812(91)87006-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017265767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0140-7007(92)90021-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019625323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0140-7007(92)90021-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019625323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00507983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025300388", 
          "https://doi.org/10.1007/bf00507983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00507983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025300388", 
          "https://doi.org/10.1007/bf00507983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0011-2275(79)90002-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026820639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0011-2275(79)90002-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026820639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0140-7007(92)90024-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027411479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0140-7007(92)90024-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027411479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0140-7007(92)90020-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045345151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0140-7007(92)90020-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045345151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00940812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051937309", 
          "https://doi.org/10.1007/bf00940812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-3812(85)87016-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053548368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/je00060a002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055879539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1699114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057769646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3253132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057925133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.458913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058036924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.220.4598.671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062526985"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-01", 
    "datePublishedReg": "1995-01-01", 
    "description": "Refrigerant R134a (1,1.1,2-tetrafuoroethane) is a leading substitute for refrigerant R12. As such, there has been worldwide activity to develop accurate wide-range equations of state for this fluid. In this study. we have developed a new selection algorithm for determining high-accuracy equations of state in the Helmholtz representation. This method combines least-squares regression analysis with simulated annealing optimization. Simulated annealing, unlike stepwise regression, allows for the controlled acceptance of random increases in the objective function. Thus, this procedure produces a computationally efficient selection algorithm which is not susceptible to the function-space local-minima problems present in a purely stepwise regression approach. Two equations are presented in this work and compared against experimental data and other high-accuracy equations of state for R134a. One equation was produced strictly by using stepwise a regression algorithm, while the other was produced using the simulated-annealing selection algorithm. In both cases the temperature dependence of the equations was restricted to have no terms whose exponents were greater than live.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01438961", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043587", 
        "issn": [
          "0195-928X", 
          "1572-9567"
        ], 
        "name": "International Journal of Thermophysics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Application of a new selection algorithm to the development of a wide-range equation of state for refrigerant R134a", 
    "pagination": "101-110", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3bacabd5a7f35f606f1b4fe07eca3d9c62a89fe644122029126be2c92b8e55eb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01438961"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012525526"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01438961", 
      "https://app.dimensions.ai/details/publication/pub.1012525526"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46766_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01438961"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01438961'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01438961'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01438961'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01438961'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01438961 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N4ccaea8a256c4bb3bc83abb9623e6108
4 schema:citation sg:pub.10.1007/bf00502104
5 sg:pub.10.1007/bf00507983
6 sg:pub.10.1007/bf00940812
7 https://doi.org/10.1016/0011-2275(79)90002-x
8 https://doi.org/10.1016/0140-7007(92)90020-u
9 https://doi.org/10.1016/0140-7007(92)90021-l
10 https://doi.org/10.1016/0140-7007(92)90024-o
11 https://doi.org/10.1016/0378-3812(85)87016-3
12 https://doi.org/10.1016/0378-3812(91)87006-u
13 https://doi.org/10.1016/s0021-9614(05)80159-4
14 https://doi.org/10.1021/je00060a002
15 https://doi.org/10.1063/1.1699114
16 https://doi.org/10.1063/1.3253132
17 https://doi.org/10.1063/1.458913
18 https://doi.org/10.1126/science.220.4598.671
19 schema:datePublished 1995-01
20 schema:datePublishedReg 1995-01-01
21 schema:description Refrigerant R134a (1,1.1,2-tetrafuoroethane) is a leading substitute for refrigerant R12. As such, there has been worldwide activity to develop accurate wide-range equations of state for this fluid. In this study. we have developed a new selection algorithm for determining high-accuracy equations of state in the Helmholtz representation. This method combines least-squares regression analysis with simulated annealing optimization. Simulated annealing, unlike stepwise regression, allows for the controlled acceptance of random increases in the objective function. Thus, this procedure produces a computationally efficient selection algorithm which is not susceptible to the function-space local-minima problems present in a purely stepwise regression approach. Two equations are presented in this work and compared against experimental data and other high-accuracy equations of state for R134a. One equation was produced strictly by using stepwise a regression algorithm, while the other was produced using the simulated-annealing selection algorithm. In both cases the temperature dependence of the equations was restricted to have no terms whose exponents were greater than live.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N56d9b46f6a0d4585a3b5861004daff05
26 Na6db7cdbef284a6fa2ae767a264e3e71
27 sg:journal.1043587
28 schema:name Application of a new selection algorithm to the development of a wide-range equation of state for refrigerant R134a
29 schema:pagination 101-110
30 schema:productId N1fbc181e20a84ccc9b72b09d3232ef31
31 N20bad148a87a4bf7a1b871256da099f3
32 N4749d7f7948d41a087ae5b443d914d6a
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012525526
34 https://doi.org/10.1007/bf01438961
35 schema:sdDatePublished 2019-04-11T13:33
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Ne785b79349bb44d1971975768f6bc8a2
38 schema:url http://link.springer.com/10.1007/BF01438961
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N1fbc181e20a84ccc9b72b09d3232ef31 schema:name readcube_id
43 schema:value 3bacabd5a7f35f606f1b4fe07eca3d9c62a89fe644122029126be2c92b8e55eb
44 rdf:type schema:PropertyValue
45 N20bad148a87a4bf7a1b871256da099f3 schema:name dimensions_id
46 schema:value pub.1012525526
47 rdf:type schema:PropertyValue
48 N4749d7f7948d41a087ae5b443d914d6a schema:name doi
49 schema:value 10.1007/bf01438961
50 rdf:type schema:PropertyValue
51 N4ccaea8a256c4bb3bc83abb9623e6108 rdf:first N87e084186705432596ee07f7dbe3743b
52 rdf:rest N689f470158b345baa0e2d2beab10daa4
53 N56d9b46f6a0d4585a3b5861004daff05 schema:volumeNumber 16
54 rdf:type schema:PublicationVolume
55 N689f470158b345baa0e2d2beab10daa4 rdf:first sg:person.012014412040.38
56 rdf:rest rdf:nil
57 N87e084186705432596ee07f7dbe3743b schema:affiliation https://www.grid.ac/institutes/grid.254549.b
58 schema:familyName Shubert
59 schema:givenName K. B.
60 rdf:type schema:Person
61 Na6db7cdbef284a6fa2ae767a264e3e71 schema:issueNumber 1
62 rdf:type schema:PublicationIssue
63 Ne785b79349bb44d1971975768f6bc8a2 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
69 schema:name Numerical and Computational Mathematics
70 rdf:type schema:DefinedTerm
71 sg:journal.1043587 schema:issn 0195-928X
72 1572-9567
73 schema:name International Journal of Thermophysics
74 rdf:type schema:Periodical
75 sg:person.012014412040.38 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
76 schema:familyName Ely
77 schema:givenName J. F.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012014412040.38
79 rdf:type schema:Person
80 sg:pub.10.1007/bf00502104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013319670
81 https://doi.org/10.1007/bf00502104
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf00507983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025300388
84 https://doi.org/10.1007/bf00507983
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf00940812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051937309
87 https://doi.org/10.1007/bf00940812
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/0011-2275(79)90002-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026820639
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0140-7007(92)90020-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1045345151
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0140-7007(92)90021-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1019625323
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0140-7007(92)90024-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1027411479
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0378-3812(85)87016-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053548368
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0378-3812(91)87006-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1017265767
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/s0021-9614(05)80159-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001824900
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1021/je00060a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055879539
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1063/1.1699114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057769646
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1063/1.3253132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057925133
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1063/1.458913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058036924
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1126/science.220.4598.671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062526985
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.254549.b schema:alternateName Colorado School of Mines
114 schema:name Department of Chemical Engineering and Petroleum Refining, Colorado School of Mines, 804111-1887, Golden, Colorado, USA
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...