Semiclassical calculations with nuclear model potentials in the ħ-resummation approach View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1984-10

AUTHORS

J. Bartel, M. Durand, M. Brack

ABSTRACT

The single-particle densityρ(r) of a system of fermions can be calculated in a tractable way as the Laplace inverse of the Bloch density describing the system. The complex integrals involved can be solved very easily by the saddle-point method. The semiclassical nature of this approach is illustrated in the simple example of the single-particle level density of a harmonic oscillator potential. It is then applied to calculate the total energy of particles in different mean field potentials. The exact Bloch density being generally unknown, different approximate forms are used in our calculations which correspond to a partial resummation of the Wigner-Kirkwoodħ-expansion. The resulting local densities reproduce the exact density distributions on the average, without quantal oscillations. They are well defined everywhere, even beyond the classical turning point, in contrast to the original Wigner-Kirkwood approach. More... »

PAGES

341-347

References to SciGraph publications

  • 1978-12. A semiclassical density matrix valid beyond the classically allowed region in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 1980-03. Partial resummation ofℏ-expansion of the Bloch density for non local potentials in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 1935-07. Zur Theorie der Kernmassen in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 1980. The Nuclear Many-Body Problem in NONE
  • 1980-09. Validity of the semiclassical kinetic energy density functional for deformed nuclear shapes in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 1950. Handbuch der Laplace-Transformation, Band I: Theorie der Laplace-Transformation in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01438459

    DOI

    http://dx.doi.org/10.1007/bf01438459

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046254749


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratoire de Physique Th\u00e9orique, Universit\u00e9 de Bordeaux, Gradignan, France", 
              "id": "http://www.grid.ac/institutes/grid.412041.2", 
              "name": [
                "Institut Laue-Langevin, Grenoble, France", 
                "Laboratoire de Physique Th\u00e9orique, Universit\u00e9 de Bordeaux, Gradignan, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bartel", 
            "givenName": "J.", 
            "id": "sg:person.010555324705.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010555324705.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut des Sciences Nucl\u00e9aires (IN2P3), Grenoble, France", 
              "id": "http://www.grid.ac/institutes/grid.472561.3", 
              "name": [
                "Institut des Sciences Nucl\u00e9aires (IN2P3), Grenoble, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Durand", 
            "givenName": "M.", 
            "id": "sg:person.015304374333.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015304374333.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, Federal Republic of Germany", 
              "id": "http://www.grid.ac/institutes/grid.7727.5", 
              "name": [
                "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brack", 
            "givenName": "M.", 
            "id": "sg:person.012734147145.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734147145.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01892805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006905170", 
              "https://doi.org/10.1007/bf01892805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01408895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002298892", 
              "https://doi.org/10.1007/bf01408895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01415620", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040528268", 
              "https://doi.org/10.1007/bf01415620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-6984-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009039969", 
              "https://doi.org/10.1007/978-3-0348-6984-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01337700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017034502", 
              "https://doi.org/10.1007/bf01337700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-61852-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109710367", 
              "https://doi.org/10.1007/978-3-642-61852-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1984-10", 
        "datePublishedReg": "1984-10-01", 
        "description": "The single-particle density\u03c1(r) of a system of fermions can be calculated in a tractable way as the Laplace inverse of the Bloch density describing the system. The complex integrals involved can be solved very easily by the saddle-point method. The semiclassical nature of this approach is illustrated in the simple example of the single-particle level density of a harmonic oscillator potential. It is then applied to calculate the total energy of particles in different mean field potentials. The exact Bloch density being generally unknown, different approximate forms are used in our calculations which correspond to a partial resummation of the Wigner-Kirkwood\u0127-expansion. The resulting local densities reproduce the exact density distributions on the average, without quantal oscillations. They are well defined everywhere, even beyond the classical turning point, in contrast to the original Wigner-Kirkwood approach.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01438459", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1313831", 
            "issn": [
              "0939-7922", 
              "1431-5831"
            ], 
            "name": "Zeitschrift f\u00fcr Physik A Hadrons and nuclei", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "315"
          }
        ], 
        "keywords": [
          "different approximate forms", 
          "different mean-field potentials", 
          "single-particle level density", 
          "mean-field potential", 
          "density distribution", 
          "harmonic oscillator potential", 
          "calculations", 
          "classical turning points", 
          "system of fermions", 
          "total energy", 
          "model potential", 
          "density", 
          "level density", 
          "local density", 
          "semiclassical calculations", 
          "semiclassical nature", 
          "oscillator potential", 
          "potential", 
          "particles", 
          "partial resummation", 
          "saddle point method", 
          "energy", 
          "approximate form", 
          "fermions", 
          "nature", 
          "resummation", 
          "system", 
          "method", 
          "oscillations", 
          "approach", 
          "form", 
          "Laplace inverse", 
          "simple example", 
          "distribution", 
          "contrast", 
          "integrals", 
          "complex integrals", 
          "example", 
          "field potentials", 
          "inverse", 
          "turning point", 
          "point", 
          "way", 
          "expansion", 
          "tractable way", 
          "average", 
          "Bloch density", 
          "exact density distribution"
        ], 
        "name": "Semiclassical calculations with nuclear model potentials in the \u0127-resummation approach", 
        "pagination": "341-347", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046254749"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01438459"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01438459", 
          "https://app.dimensions.ai/details/publication/pub.1046254749"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_171.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01438459"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01438459'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01438459'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01438459'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01438459'


     

    This table displays all metadata directly associated to this object as RDF triples.

    150 TRIPLES      21 PREDICATES      79 URIs      65 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01438459 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N7d0133965c9b4f52b1d34baceb8c4c89
    4 schema:citation sg:pub.10.1007/978-3-0348-6984-3
    5 sg:pub.10.1007/978-3-642-61852-9
    6 sg:pub.10.1007/bf01337700
    7 sg:pub.10.1007/bf01408895
    8 sg:pub.10.1007/bf01415620
    9 sg:pub.10.1007/bf01892805
    10 schema:datePublished 1984-10
    11 schema:datePublishedReg 1984-10-01
    12 schema:description The single-particle densityρ(r) of a system of fermions can be calculated in a tractable way as the Laplace inverse of the Bloch density describing the system. The complex integrals involved can be solved very easily by the saddle-point method. The semiclassical nature of this approach is illustrated in the simple example of the single-particle level density of a harmonic oscillator potential. It is then applied to calculate the total energy of particles in different mean field potentials. The exact Bloch density being generally unknown, different approximate forms are used in our calculations which correspond to a partial resummation of the Wigner-Kirkwoodħ-expansion. The resulting local densities reproduce the exact density distributions on the average, without quantal oscillations. They are well defined everywhere, even beyond the classical turning point, in contrast to the original Wigner-Kirkwood approach.
    13 schema:genre article
    14 schema:isAccessibleForFree true
    15 schema:isPartOf Nad1e22b75d754fb4927c5405bc0efe7a
    16 Ne51338ad357e4d6a9a3460f0bd26e02f
    17 sg:journal.1313831
    18 schema:keywords Bloch density
    19 Laplace inverse
    20 approach
    21 approximate form
    22 average
    23 calculations
    24 classical turning points
    25 complex integrals
    26 contrast
    27 density
    28 density distribution
    29 different approximate forms
    30 different mean-field potentials
    31 distribution
    32 energy
    33 exact density distribution
    34 example
    35 expansion
    36 fermions
    37 field potentials
    38 form
    39 harmonic oscillator potential
    40 integrals
    41 inverse
    42 level density
    43 local density
    44 mean-field potential
    45 method
    46 model potential
    47 nature
    48 oscillations
    49 oscillator potential
    50 partial resummation
    51 particles
    52 point
    53 potential
    54 resummation
    55 saddle point method
    56 semiclassical calculations
    57 semiclassical nature
    58 simple example
    59 single-particle level density
    60 system
    61 system of fermions
    62 total energy
    63 tractable way
    64 turning point
    65 way
    66 schema:name Semiclassical calculations with nuclear model potentials in the ħ-resummation approach
    67 schema:pagination 341-347
    68 schema:productId N2d99c121f2e5468a9fb8af9649af3f2e
    69 Nd4d7aae882e84129a89033ebce055b37
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046254749
    71 https://doi.org/10.1007/bf01438459
    72 schema:sdDatePublished 2022-10-01T06:27
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher N9059bc21713c466b85eae36699fed681
    75 schema:url https://doi.org/10.1007/bf01438459
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N2d99c121f2e5468a9fb8af9649af3f2e schema:name dimensions_id
    80 schema:value pub.1046254749
    81 rdf:type schema:PropertyValue
    82 N7d0133965c9b4f52b1d34baceb8c4c89 rdf:first sg:person.010555324705.87
    83 rdf:rest Nde886c43066f45d09f89a42adbe50053
    84 N9059bc21713c466b85eae36699fed681 schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 Nad1e22b75d754fb4927c5405bc0efe7a schema:issueNumber 3
    87 rdf:type schema:PublicationIssue
    88 Nd4d7aae882e84129a89033ebce055b37 schema:name doi
    89 schema:value 10.1007/bf01438459
    90 rdf:type schema:PropertyValue
    91 Nde886c43066f45d09f89a42adbe50053 rdf:first sg:person.015304374333.77
    92 rdf:rest Nf39aff62d8534b7e9d480770819659a6
    93 Ne51338ad357e4d6a9a3460f0bd26e02f schema:volumeNumber 315
    94 rdf:type schema:PublicationVolume
    95 Nf39aff62d8534b7e9d480770819659a6 rdf:first sg:person.012734147145.29
    96 rdf:rest rdf:nil
    97 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Chemical Sciences
    99 rdf:type schema:DefinedTerm
    100 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Physical Chemistry (incl. Structural)
    102 rdf:type schema:DefinedTerm
    103 sg:journal.1313831 schema:issn 0939-7922
    104 1431-5831
    105 schema:name Zeitschrift für Physik A Hadrons and nuclei
    106 schema:publisher Springer Nature
    107 rdf:type schema:Periodical
    108 sg:person.010555324705.87 schema:affiliation grid-institutes:grid.412041.2
    109 schema:familyName Bartel
    110 schema:givenName J.
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010555324705.87
    112 rdf:type schema:Person
    113 sg:person.012734147145.29 schema:affiliation grid-institutes:grid.7727.5
    114 schema:familyName Brack
    115 schema:givenName M.
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734147145.29
    117 rdf:type schema:Person
    118 sg:person.015304374333.77 schema:affiliation grid-institutes:grid.472561.3
    119 schema:familyName Durand
    120 schema:givenName M.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015304374333.77
    122 rdf:type schema:Person
    123 sg:pub.10.1007/978-3-0348-6984-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009039969
    124 https://doi.org/10.1007/978-3-0348-6984-3
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/978-3-642-61852-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109710367
    127 https://doi.org/10.1007/978-3-642-61852-9
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/bf01337700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017034502
    130 https://doi.org/10.1007/bf01337700
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/bf01408895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002298892
    133 https://doi.org/10.1007/bf01408895
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/bf01415620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040528268
    136 https://doi.org/10.1007/bf01415620
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/bf01892805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006905170
    139 https://doi.org/10.1007/bf01892805
    140 rdf:type schema:CreativeWork
    141 grid-institutes:grid.412041.2 schema:alternateName Laboratoire de Physique Théorique, Université de Bordeaux, Gradignan, France
    142 schema:name Institut Laue-Langevin, Grenoble, France
    143 Laboratoire de Physique Théorique, Université de Bordeaux, Gradignan, France
    144 rdf:type schema:Organization
    145 grid-institutes:grid.472561.3 schema:alternateName Institut des Sciences Nucléaires (IN2P3), Grenoble, France
    146 schema:name Institut des Sciences Nucléaires (IN2P3), Grenoble, France
    147 rdf:type schema:Organization
    148 grid-institutes:grid.7727.5 schema:alternateName Institut für Theoretische Physik, Universität Regensburg, Federal Republic of Germany
    149 schema:name Institut für Theoretische Physik, Universität Regensburg, Federal Republic of Germany
    150 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...