Magnetic-sublevel differential cross sections for electron-impact excitation of He n1P levels: Theory and experiment in natural and atomic coordinate frames View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-12

AUTHORS

G. Csanak, D. C. Cartwright, S. Trajmar

ABSTRACT

Experimental data for the average transferred angular momentum, 〈⊥〉, have been combined with experimental differential cross section [DCS] data for electron impact excitation of the 21P and 31P levels of helium to obtain the individual magnetic-sublevel differential cross-sections, [DCSMn], in the natural (and atomic) coordinate system. First-order many-body theory (FOMBT) has been used to obtain corresponding theoretical predictions for DCSMn which are compared to these results. This comparison shows that FOMBT generally predictsM=+1 sublevel excitation DCS better than that forM=−1. More... »

PAGES

327-336

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01437299

DOI

http://dx.doi.org/10.1007/bf01437299

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022824197


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Los Alamos National Laboratory, 87545, Los Alamos, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Csanak", 
        "givenName": "G.", 
        "id": "sg:person.0660522143.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660522143.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Los Alamos National Laboratory, 87545, Los Alamos, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cartwright", 
        "givenName": "D. C.", 
        "id": "sg:person.010542011027.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010542011027.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jet Propulsion Lab", 
          "id": "https://www.grid.ac/institutes/grid.211367.0", 
          "name": [
            "Jet Propulsion Laboratory, California Institute of Technology, 91109, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trajmar", 
        "givenName": "S.", 
        "id": "sg:person.01100436730.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100436730.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01397228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005330699", 
          "https://doi.org/10.1007/bf01397228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(82)90841-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005633111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(82)90841-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005633111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(84)90014-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007279004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(84)90014-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007279004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/22/17/015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019363226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(88)90151-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036657391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(88)90151-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036657391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.1958.0011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041445850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphys:019730034010082700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056989116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.430763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058008795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3700/15/14/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058949990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3700/19/6/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058952523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.1.778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060464598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.1.778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060464598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.21.759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060468651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.21.759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060468651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.27.1678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060470864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.27.1678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060470864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.3.1322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060472266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.3.1322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060472266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.4.2288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060479672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.4.2288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060479672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.1625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060484760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.1625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060484760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.31.576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060777673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.31.576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060777673"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-12", 
    "datePublishedReg": "1993-12-01", 
    "description": "Experimental data for the average transferred angular momentum, \u3008\u22a5\u3009, have been combined with experimental differential cross section [DCS] data for electron impact excitation of the 21P and 31P levels of helium to obtain the individual magnetic-sublevel differential cross-sections, [DCSMn], in the natural (and atomic) coordinate system. First-order many-body theory (FOMBT) has been used to obtain corresponding theoretical predictions for DCSMn which are compared to these results. This comparison shows that FOMBT generally predictsM=+1 sublevel excitation DCS better than that forM=\u22121.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01437299", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1277743", 
        "issn": [
          "0178-7683", 
          "1431-5866"
        ], 
        "name": "Zeitschrift f\u00fcr Physik D Atoms,Molecules and Clusters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "Magnetic-sublevel differential cross sections for electron-impact excitation of He n1P levels: Theory and experiment in natural and atomic coordinate frames", 
    "pagination": "327-336", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6cbd494868839457ee599935dfaae9ce4238e6feebe87bf6cce7e6a074b468d8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01437299"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022824197"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01437299", 
      "https://app.dimensions.ai/details/publication/pub.1022824197"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46754_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF01437299"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01437299'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01437299'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01437299'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01437299'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01437299 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nbfa68afd797244c29e3d5399f0cca50c
4 schema:citation sg:pub.10.1007/bf01397228
5 https://doi.org/10.1016/0370-1573(84)90014-0
6 https://doi.org/10.1016/0370-1573(88)90151-2
7 https://doi.org/10.1016/0375-9601(82)90841-6
8 https://doi.org/10.1051/jphys:019730034010082700
9 https://doi.org/10.1063/1.430763
10 https://doi.org/10.1088/0022-3700/15/14/004
11 https://doi.org/10.1088/0022-3700/19/6/007
12 https://doi.org/10.1088/0953-4075/22/17/015
13 https://doi.org/10.1098/rsta.1958.0011
14 https://doi.org/10.1103/physreva.1.778
15 https://doi.org/10.1103/physreva.21.759
16 https://doi.org/10.1103/physreva.27.1678
17 https://doi.org/10.1103/physreva.3.1322
18 https://doi.org/10.1103/physreva.4.2288
19 https://doi.org/10.1103/physreva.45.1625
20 https://doi.org/10.1103/physrevlett.31.576
21 schema:datePublished 1993-12
22 schema:datePublishedReg 1993-12-01
23 schema:description Experimental data for the average transferred angular momentum, 〈⊥〉, have been combined with experimental differential cross section [DCS] data for electron impact excitation of the 21P and 31P levels of helium to obtain the individual magnetic-sublevel differential cross-sections, [DCSMn], in the natural (and atomic) coordinate system. First-order many-body theory (FOMBT) has been used to obtain corresponding theoretical predictions for DCSMn which are compared to these results. This comparison shows that FOMBT generally predictsM=+1 sublevel excitation DCS better than that forM=−1.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N4392f6db097a4dc98205ded9cc5bd4e0
28 Nd4be262bf5ad49729594ca672ecda84b
29 sg:journal.1277743
30 schema:name Magnetic-sublevel differential cross sections for electron-impact excitation of He n1P levels: Theory and experiment in natural and atomic coordinate frames
31 schema:pagination 327-336
32 schema:productId N10a631a513f44122974ee8250fd2db35
33 N35e419db0a064934bbbe953c4fb05e8a
34 N68754cb61a5144e1b45e8bd7379b2c72
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022824197
36 https://doi.org/10.1007/bf01437299
37 schema:sdDatePublished 2019-04-11T13:30
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nd40387dc1c4248e4925a6fa6115e6a93
40 schema:url http://link.springer.com/10.1007%2FBF01437299
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N10a631a513f44122974ee8250fd2db35 schema:name doi
45 schema:value 10.1007/bf01437299
46 rdf:type schema:PropertyValue
47 N35e419db0a064934bbbe953c4fb05e8a schema:name readcube_id
48 schema:value 6cbd494868839457ee599935dfaae9ce4238e6feebe87bf6cce7e6a074b468d8
49 rdf:type schema:PropertyValue
50 N4392f6db097a4dc98205ded9cc5bd4e0 schema:volumeNumber 25
51 rdf:type schema:PublicationVolume
52 N68754cb61a5144e1b45e8bd7379b2c72 schema:name dimensions_id
53 schema:value pub.1022824197
54 rdf:type schema:PropertyValue
55 Na43e74ffa66c47ac87ee006b7f378656 rdf:first sg:person.01100436730.49
56 rdf:rest rdf:nil
57 Nbfa68afd797244c29e3d5399f0cca50c rdf:first sg:person.0660522143.14
58 rdf:rest Nc9231185b085446a9228d7d7b0334f0f
59 Nc9231185b085446a9228d7d7b0334f0f rdf:first sg:person.010542011027.88
60 rdf:rest Na43e74ffa66c47ac87ee006b7f378656
61 Nd40387dc1c4248e4925a6fa6115e6a93 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nd4be262bf5ad49729594ca672ecda84b schema:issueNumber 4
64 rdf:type schema:PublicationIssue
65 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
66 schema:name Physical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
69 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
70 rdf:type schema:DefinedTerm
71 sg:journal.1277743 schema:issn 0178-7683
72 1431-5866
73 schema:name Zeitschrift für Physik D Atoms,Molecules and Clusters
74 rdf:type schema:Periodical
75 sg:person.010542011027.88 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
76 schema:familyName Cartwright
77 schema:givenName D. C.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010542011027.88
79 rdf:type schema:Person
80 sg:person.01100436730.49 schema:affiliation https://www.grid.ac/institutes/grid.211367.0
81 schema:familyName Trajmar
82 schema:givenName S.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100436730.49
84 rdf:type schema:Person
85 sg:person.0660522143.14 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
86 schema:familyName Csanak
87 schema:givenName G.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660522143.14
89 rdf:type schema:Person
90 sg:pub.10.1007/bf01397228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005330699
91 https://doi.org/10.1007/bf01397228
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0370-1573(84)90014-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007279004
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0370-1573(88)90151-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036657391
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0375-9601(82)90841-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005633111
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1051/jphys:019730034010082700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056989116
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1063/1.430763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058008795
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1088/0022-3700/15/14/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058949990
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1088/0022-3700/19/6/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058952523
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1088/0953-4075/22/17/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019363226
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1098/rsta.1958.0011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041445850
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physreva.1.778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060464598
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physreva.21.759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060468651
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physreva.27.1678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060470864
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physreva.3.1322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060472266
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physreva.4.2288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060479672
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physreva.45.1625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060484760
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevlett.31.576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060777673
124 rdf:type schema:CreativeWork
125 https://www.grid.ac/institutes/grid.148313.c schema:alternateName Los Alamos National Laboratory
126 schema:name Los Alamos National Laboratory, 87545, Los Alamos, NM, USA
127 rdf:type schema:Organization
128 https://www.grid.ac/institutes/grid.211367.0 schema:alternateName Jet Propulsion Lab
129 schema:name Jet Propulsion Laboratory, California Institute of Technology, 91109, Pasadena, CA, USA
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...