Ontology type: schema:ScholarlyArticle
1980-12
AUTHORSJ. Dudek, W. Dudek, E. Ruchowska, J. Skalski
ABSTRACTDeformed Nilsson and Woods-Saxon potentials were employed for generating single particle states used henceforth for calculating the inertia tensor (cranking model and monopole pairing) and the collective energy surfaces (Strutinsky method). The deformation was parametrized in terms of quadrupole and hexadecapole degrees of freedom. The classical energy expression obtained from the inertia tensor and energy surfaces was quantized and the resulting stationary Schrödinger equation was solved using the approximate method. The secondIπ=02+ collective level energies were calculated for the Rare Earth and Actinide nuclei and the results compared with the experimental data. The vibrational level energies agree with the experimental ones much better for spherical nuclei for both single particle potentials; the discrepancies for deformed nuclei overestimate the experimental results by roughly a factor of two. It is argued that coupling of the axially symmetric quadrupole degrees of freedom to non-axial and hexadecapole ones does not affect the conclusions about systematically too low mass parameter values. The alternative explanation of the systematic deviations from the 02+ level energies could be a systematically too high stiffness of the energy surfaces obtained with the Strutinsky method. More... »
PAGES341-350
http://scigraph.springernature.com/pub.10.1007/bf01434142
DOIhttp://dx.doi.org/10.1007/bf01434142
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1012242153
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Theoretical Physics, Warsaw University, Warsaw, Poland",
"id": "http://www.grid.ac/institutes/grid.12847.38",
"name": [
"Institute of Theoretical Physics, Warsaw University, Warsaw, Poland"
],
"type": "Organization"
},
"familyName": "Dudek",
"givenName": "J.",
"id": "sg:person.0646363444.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646363444.22"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Theoretical Physics, Warsaw University, Warsaw, Poland",
"id": "http://www.grid.ac/institutes/grid.12847.38",
"name": [
"Institute of Theoretical Physics, Warsaw University, Warsaw, Poland"
],
"type": "Organization"
},
"familyName": "Dudek",
"givenName": "W.",
"id": "sg:person.014144733707.76",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014144733707.76"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Theoretical Physics, Warsaw University, Warsaw, Poland",
"id": "http://www.grid.ac/institutes/grid.12847.38",
"name": [
"Institute of Theoretical Physics, Warsaw University, Warsaw, Poland"
],
"type": "Organization"
},
"familyName": "Ruchowska",
"givenName": "E.",
"id": "sg:person.016040155554.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016040155554.02"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Theoretical Physics, Warsaw University, Warsaw, Poland",
"id": "http://www.grid.ac/institutes/grid.12847.38",
"name": [
"Institute of Theoretical Physics, Warsaw University, Warsaw, Poland"
],
"type": "Organization"
},
"familyName": "Skalski",
"givenName": "J.",
"id": "sg:person.011717705405.04",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011717705405.04"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01440866",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020449933",
"https://doi.org/10.1007/bf01440866"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01386889",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044288418",
"https://doi.org/10.1007/bf01386889"
],
"type": "CreativeWork"
}
],
"datePublished": "1980-12",
"datePublishedReg": "1980-12-01",
"description": "Deformed Nilsson and Woods-Saxon potentials were employed for generating single particle states used henceforth for calculating the inertia tensor (cranking model and monopole pairing) and the collective energy surfaces (Strutinsky method). The deformation was parametrized in terms of quadrupole and hexadecapole degrees of freedom. The classical energy expression obtained from the inertia tensor and energy surfaces was quantized and the resulting stationary Schr\u00f6dinger equation was solved using the approximate method. The secondI\u03c0=02+ collective level energies were calculated for the Rare Earth and Actinide nuclei and the results compared with the experimental data. The vibrational level energies agree with the experimental ones much better for spherical nuclei for both single particle potentials; the discrepancies for deformed nuclei overestimate the experimental results by roughly a factor of two. It is argued that coupling of the axially symmetric quadrupole degrees of freedom to non-axial and hexadecapole ones does not affect the conclusions about systematically too low mass parameter values. The alternative explanation of the systematic deviations from the 02+ level energies could be a systematically too high stiffness of the energy surfaces obtained with the Strutinsky method.",
"genre": "article",
"id": "sg:pub.10.1007/bf01434142",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1313831",
"issn": [
"0939-7922",
"1431-5831"
],
"name": "Zeitschrift f\u00fcr Physik A Hadrons and nuclei",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "294"
}
],
"keywords": [
"level energies",
"energy surface",
"single-particle states",
"single-particle potential",
"Woods-Saxon potential",
"terms of quadrupole",
"actinide nuclei",
"stationary Schr\u00f6dinger equation",
"particle states",
"particle potential",
"spherical nuclei",
"deformed nuclei",
"Strutinsky method",
"vibrational level energies",
"Schr\u00f6dinger equation",
"quadrupole degrees",
"hexadecapole degree",
"inertia tensor",
"energy",
"rare earth",
"experimental data",
"experimental ones",
"systematic deviations",
"nucleus",
"energy expression",
"quadrupole",
"tensor",
"surface",
"coupling",
"experimental results",
"approximate method",
"Nilsson",
"Earth",
"freedom",
"state",
"lower values",
"parameter values",
"potential",
"alternative explanation",
"discrepancy",
"equations",
"parameters",
"deviation",
"one",
"method",
"values",
"inertia parameters",
"explanation",
"results",
"degree",
"terms",
"data",
"deformation",
"high stiffness",
"factors",
"stiffness",
"conclusion",
"expression"
],
"name": "Systematically too low values of the cranking model collective inertia parameters",
"pagination": "341-350",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1012242153"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf01434142"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf01434142",
"https://app.dimensions.ai/details/publication/pub.1012242153"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:49",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_170.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf01434142"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01434142'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01434142'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01434142'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01434142'
This table displays all metadata directly associated to this object as RDF triples.
144 TRIPLES
21 PREDICATES
85 URIs
75 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf01434142 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | schema:author | N2592cfdb358d416786477abc8e79c72b |
4 | ″ | schema:citation | sg:pub.10.1007/bf01386889 |
5 | ″ | ″ | sg:pub.10.1007/bf01440866 |
6 | ″ | schema:datePublished | 1980-12 |
7 | ″ | schema:datePublishedReg | 1980-12-01 |
8 | ″ | schema:description | Deformed Nilsson and Woods-Saxon potentials were employed for generating single particle states used henceforth for calculating the inertia tensor (cranking model and monopole pairing) and the collective energy surfaces (Strutinsky method). The deformation was parametrized in terms of quadrupole and hexadecapole degrees of freedom. The classical energy expression obtained from the inertia tensor and energy surfaces was quantized and the resulting stationary Schrödinger equation was solved using the approximate method. The secondIπ=02+ collective level energies were calculated for the Rare Earth and Actinide nuclei and the results compared with the experimental data. The vibrational level energies agree with the experimental ones much better for spherical nuclei for both single particle potentials; the discrepancies for deformed nuclei overestimate the experimental results by roughly a factor of two. It is argued that coupling of the axially symmetric quadrupole degrees of freedom to non-axial and hexadecapole ones does not affect the conclusions about systematically too low mass parameter values. The alternative explanation of the systematic deviations from the 02+ level energies could be a systematically too high stiffness of the energy surfaces obtained with the Strutinsky method. |
9 | ″ | schema:genre | article |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N199d86e54a8e43f2a675025e6882fec6 |
12 | ″ | ″ | Na2c60db365b04e67bb2ce7c4e71ec58d |
13 | ″ | ″ | sg:journal.1313831 |
14 | ″ | schema:keywords | Earth |
15 | ″ | ″ | Nilsson |
16 | ″ | ″ | Schrödinger equation |
17 | ″ | ″ | Strutinsky method |
18 | ″ | ″ | Woods-Saxon potential |
19 | ″ | ″ | actinide nuclei |
20 | ″ | ″ | alternative explanation |
21 | ″ | ″ | approximate method |
22 | ″ | ″ | conclusion |
23 | ″ | ″ | coupling |
24 | ″ | ″ | data |
25 | ″ | ″ | deformation |
26 | ″ | ″ | deformed nuclei |
27 | ″ | ″ | degree |
28 | ″ | ″ | deviation |
29 | ″ | ″ | discrepancy |
30 | ″ | ″ | energy |
31 | ″ | ″ | energy expression |
32 | ″ | ″ | energy surface |
33 | ″ | ″ | equations |
34 | ″ | ″ | experimental data |
35 | ″ | ″ | experimental ones |
36 | ″ | ″ | experimental results |
37 | ″ | ″ | explanation |
38 | ″ | ″ | expression |
39 | ″ | ″ | factors |
40 | ″ | ″ | freedom |
41 | ″ | ″ | hexadecapole degree |
42 | ″ | ″ | high stiffness |
43 | ″ | ″ | inertia parameters |
44 | ″ | ″ | inertia tensor |
45 | ″ | ″ | level energies |
46 | ″ | ″ | lower values |
47 | ″ | ″ | method |
48 | ″ | ″ | nucleus |
49 | ″ | ″ | one |
50 | ″ | ″ | parameter values |
51 | ″ | ″ | parameters |
52 | ″ | ″ | particle potential |
53 | ″ | ″ | particle states |
54 | ″ | ″ | potential |
55 | ″ | ″ | quadrupole |
56 | ″ | ″ | quadrupole degrees |
57 | ″ | ″ | rare earth |
58 | ″ | ″ | results |
59 | ″ | ″ | single-particle potential |
60 | ″ | ″ | single-particle states |
61 | ″ | ″ | spherical nuclei |
62 | ″ | ″ | state |
63 | ″ | ″ | stationary Schrödinger equation |
64 | ″ | ″ | stiffness |
65 | ″ | ″ | surface |
66 | ″ | ″ | systematic deviations |
67 | ″ | ″ | tensor |
68 | ″ | ″ | terms |
69 | ″ | ″ | terms of quadrupole |
70 | ″ | ″ | values |
71 | ″ | ″ | vibrational level energies |
72 | ″ | schema:name | Systematically too low values of the cranking model collective inertia parameters |
73 | ″ | schema:pagination | 341-350 |
74 | ″ | schema:productId | N66c5242fb8ac4629a59765a9507095a3 |
75 | ″ | ″ | Nbb6d9258db6c4e7a9026bb9332dcbd9e |
76 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012242153 |
77 | ″ | ″ | https://doi.org/10.1007/bf01434142 |
78 | ″ | schema:sdDatePublished | 2022-08-04T16:49 |
79 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
80 | ″ | schema:sdPublisher | Nc22bc83250bd44959bc3a6173321f7b5 |
81 | ″ | schema:url | https://doi.org/10.1007/bf01434142 |
82 | ″ | sgo:license | sg:explorer/license/ |
83 | ″ | sgo:sdDataset | articles |
84 | ″ | rdf:type | schema:ScholarlyArticle |
85 | N199d86e54a8e43f2a675025e6882fec6 | schema:issueNumber | 4 |
86 | ″ | rdf:type | schema:PublicationIssue |
87 | N2592cfdb358d416786477abc8e79c72b | rdf:first | sg:person.0646363444.22 |
88 | ″ | rdf:rest | N30a3e1e0b6d44acbaa2bb05e16b42608 |
89 | N2c556d5eb9a54352b5365574917bf8f6 | rdf:first | sg:person.011717705405.04 |
90 | ″ | rdf:rest | rdf:nil |
91 | N30a3e1e0b6d44acbaa2bb05e16b42608 | rdf:first | sg:person.014144733707.76 |
92 | ″ | rdf:rest | Nef8ad2cdc37946a19138788ecfa794ac |
93 | N66c5242fb8ac4629a59765a9507095a3 | schema:name | dimensions_id |
94 | ″ | schema:value | pub.1012242153 |
95 | ″ | rdf:type | schema:PropertyValue |
96 | Na2c60db365b04e67bb2ce7c4e71ec58d | schema:volumeNumber | 294 |
97 | ″ | rdf:type | schema:PublicationVolume |
98 | Nbb6d9258db6c4e7a9026bb9332dcbd9e | schema:name | doi |
99 | ″ | schema:value | 10.1007/bf01434142 |
100 | ″ | rdf:type | schema:PropertyValue |
101 | Nc22bc83250bd44959bc3a6173321f7b5 | schema:name | Springer Nature - SN SciGraph project |
102 | ″ | rdf:type | schema:Organization |
103 | Nef8ad2cdc37946a19138788ecfa794ac | rdf:first | sg:person.016040155554.02 |
104 | ″ | rdf:rest | N2c556d5eb9a54352b5365574917bf8f6 |
105 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Physical Sciences |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
109 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
110 | ″ | rdf:type | schema:DefinedTerm |
111 | sg:journal.1313831 | schema:issn | 0939-7922 |
112 | ″ | ″ | 1431-5831 |
113 | ″ | schema:name | Zeitschrift für Physik A Hadrons and nuclei |
114 | ″ | schema:publisher | Springer Nature |
115 | ″ | rdf:type | schema:Periodical |
116 | sg:person.011717705405.04 | schema:affiliation | grid-institutes:grid.12847.38 |
117 | ″ | schema:familyName | Skalski |
118 | ″ | schema:givenName | J. |
119 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011717705405.04 |
120 | ″ | rdf:type | schema:Person |
121 | sg:person.014144733707.76 | schema:affiliation | grid-institutes:grid.12847.38 |
122 | ″ | schema:familyName | Dudek |
123 | ″ | schema:givenName | W. |
124 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014144733707.76 |
125 | ″ | rdf:type | schema:Person |
126 | sg:person.016040155554.02 | schema:affiliation | grid-institutes:grid.12847.38 |
127 | ″ | schema:familyName | Ruchowska |
128 | ″ | schema:givenName | E. |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016040155554.02 |
130 | ″ | rdf:type | schema:Person |
131 | sg:person.0646363444.22 | schema:affiliation | grid-institutes:grid.12847.38 |
132 | ″ | schema:familyName | Dudek |
133 | ″ | schema:givenName | J. |
134 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646363444.22 |
135 | ″ | rdf:type | schema:Person |
136 | sg:pub.10.1007/bf01386889 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1044288418 |
137 | ″ | ″ | https://doi.org/10.1007/bf01386889 |
138 | ″ | rdf:type | schema:CreativeWork |
139 | sg:pub.10.1007/bf01440866 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020449933 |
140 | ″ | ″ | https://doi.org/10.1007/bf01440866 |
141 | ″ | rdf:type | schema:CreativeWork |
142 | grid-institutes:grid.12847.38 | schema:alternateName | Institute of Theoretical Physics, Warsaw University, Warsaw, Poland |
143 | ″ | schema:name | Institute of Theoretical Physics, Warsaw University, Warsaw, Poland |
144 | ″ | rdf:type | schema:Organization |