Adaptive sliding mode approach for learning in a feedforward neural network View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-12

AUTHORS

X. Yu, M. Zhihong, S. M. Monzurur Rahman

ABSTRACT

An adaptive learning algorithm is proposed for a feedforward neural network. The design principle is based on the sliding mode concept. Unlike the existing algorithms, the adaptive learning algorithm developed does not require a prioriknowledge of upper bounds of bounded signals. The convergence of the algorithm is established and conditions given. Simulations are presented to show the effectiveness of the algorithm. More... »

PAGES

289-294

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01428120

DOI

http://dx.doi.org/10.1007/bf01428120

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028971790


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Central Queensland University, Faculty of Informatics and Communication, 4702, Rockhampton, QLD, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1023.0", 
          "name": [
            "Central Queensland University, Faculty of Informatics and Communication, 4702, Rockhampton, QLD, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "X.", 
        "id": "sg:person.0734025040.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734025040.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering and Computer Science, University of Tasmania, Hobart, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1009.8", 
          "name": [
            "Department of Electrical Engineering and Computer Science, University of Tasmania, Hobart, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhihong", 
        "givenName": "M.", 
        "id": "sg:person.010375224511.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010375224511.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Software Engineering, Monash University, Caulfield Campus, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "Department of Computer Science and Software Engineering, Monash University, Caulfield Campus, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rahman", 
        "givenName": "S. M. Monzurur", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-84379-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023389257", 
          "https://doi.org/10.1007/978-3-642-84379-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-12", 
    "datePublishedReg": "1998-12-01", 
    "description": "An adaptive learning algorithm is proposed for a feedforward neural network. The design principle is based on the sliding mode concept. Unlike the existing algorithms, the adaptive learning algorithm developed does not require a prioriknowledge of upper bounds of bounded signals. The convergence of the algorithm is established and conditions given. Simulations are presented to show the effectiveness of the algorithm.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01428120", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1104357", 
        "issn": [
          "0941-0643", 
          "1433-3058"
        ], 
        "name": "Neural Computing and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "feedforward neural network", 
      "neural network", 
      "adaptive learning algorithm", 
      "learning algorithm", 
      "algorithm", 
      "design principles", 
      "network", 
      "algorithm developed", 
      "upper bounds", 
      "effectiveness", 
      "bounds", 
      "concept", 
      "convergence", 
      "simulations", 
      "prioriknowledge", 
      "mode approach", 
      "principles", 
      "signals", 
      "mode concept", 
      "Developed", 
      "conditions", 
      "approach"
    ], 
    "name": "Adaptive sliding mode approach for learning in a feedforward neural network", 
    "pagination": "289-294", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028971790"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01428120"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01428120", 
      "https://app.dimensions.ai/details/publication/pub.1028971790"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_305.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01428120"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01428120'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01428120'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01428120'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01428120'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      21 PREDICATES      48 URIs      39 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01428120 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0895b4b47b3743cd86d302396570f732
4 schema:citation sg:pub.10.1007/978-3-642-84379-2
5 schema:datePublished 1998-12
6 schema:datePublishedReg 1998-12-01
7 schema:description An adaptive learning algorithm is proposed for a feedforward neural network. The design principle is based on the sliding mode concept. Unlike the existing algorithms, the adaptive learning algorithm developed does not require a prioriknowledge of upper bounds of bounded signals. The convergence of the algorithm is established and conditions given. Simulations are presented to show the effectiveness of the algorithm.
8 schema:genre article
9 schema:isAccessibleForFree false
10 schema:isPartOf N284b07d72548431cac8d886cd9106a65
11 N9a9b80effe254dca92f0b9aa99a59c3d
12 sg:journal.1104357
13 schema:keywords Developed
14 adaptive learning algorithm
15 algorithm
16 algorithm developed
17 approach
18 bounds
19 concept
20 conditions
21 convergence
22 design principles
23 effectiveness
24 feedforward neural network
25 learning algorithm
26 mode approach
27 mode concept
28 network
29 neural network
30 principles
31 prioriknowledge
32 signals
33 simulations
34 upper bounds
35 schema:name Adaptive sliding mode approach for learning in a feedforward neural network
36 schema:pagination 289-294
37 schema:productId N2b88d8ba8e68469a8ac043775e4a7f36
38 N37b596f255c94b378f34a2f3ede3ce21
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028971790
40 https://doi.org/10.1007/bf01428120
41 schema:sdDatePublished 2022-09-02T15:49
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Ndaf5b0acd1f34579a41d36c728abde5a
44 schema:url https://doi.org/10.1007/bf01428120
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N0895b4b47b3743cd86d302396570f732 rdf:first sg:person.0734025040.06
49 rdf:rest N755e9fa7201a4ba28624378d109877ba
50 N161e525a800c4ab4b6c1404c988dc72d schema:affiliation grid-institutes:grid.1002.3
51 schema:familyName Rahman
52 schema:givenName S. M. Monzurur
53 rdf:type schema:Person
54 N284b07d72548431cac8d886cd9106a65 schema:issueNumber 4
55 rdf:type schema:PublicationIssue
56 N2b88d8ba8e68469a8ac043775e4a7f36 schema:name dimensions_id
57 schema:value pub.1028971790
58 rdf:type schema:PropertyValue
59 N37b596f255c94b378f34a2f3ede3ce21 schema:name doi
60 schema:value 10.1007/bf01428120
61 rdf:type schema:PropertyValue
62 N59bab1e8151343b6a07899e089864938 rdf:first N161e525a800c4ab4b6c1404c988dc72d
63 rdf:rest rdf:nil
64 N755e9fa7201a4ba28624378d109877ba rdf:first sg:person.010375224511.93
65 rdf:rest N59bab1e8151343b6a07899e089864938
66 N9a9b80effe254dca92f0b9aa99a59c3d schema:volumeNumber 7
67 rdf:type schema:PublicationVolume
68 Ndaf5b0acd1f34579a41d36c728abde5a schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
71 schema:name Information and Computing Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
74 schema:name Artificial Intelligence and Image Processing
75 rdf:type schema:DefinedTerm
76 sg:journal.1104357 schema:issn 0941-0643
77 1433-3058
78 schema:name Neural Computing and Applications
79 schema:publisher Springer Nature
80 rdf:type schema:Periodical
81 sg:person.010375224511.93 schema:affiliation grid-institutes:grid.1009.8
82 schema:familyName Zhihong
83 schema:givenName M.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010375224511.93
85 rdf:type schema:Person
86 sg:person.0734025040.06 schema:affiliation grid-institutes:grid.1023.0
87 schema:familyName Yu
88 schema:givenName X.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734025040.06
90 rdf:type schema:Person
91 sg:pub.10.1007/978-3-642-84379-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023389257
92 https://doi.org/10.1007/978-3-642-84379-2
93 rdf:type schema:CreativeWork
94 grid-institutes:grid.1002.3 schema:alternateName Department of Computer Science and Software Engineering, Monash University, Caulfield Campus, Australia
95 schema:name Department of Computer Science and Software Engineering, Monash University, Caulfield Campus, Australia
96 rdf:type schema:Organization
97 grid-institutes:grid.1009.8 schema:alternateName Department of Electrical Engineering and Computer Science, University of Tasmania, Hobart, Australia
98 schema:name Department of Electrical Engineering and Computer Science, University of Tasmania, Hobart, Australia
99 rdf:type schema:Organization
100 grid-institutes:grid.1023.0 schema:alternateName Central Queensland University, Faculty of Informatics and Communication, 4702, Rockhampton, QLD, Australia
101 schema:name Central Queensland University, Faculty of Informatics and Communication, 4702, Rockhampton, QLD, Australia
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...