Thermal properties of the valence electrons in alkali metal clusters View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1991-03

AUTHORS

M. Brack, O. Genzken, K. Hansen

ABSTRACT

The finite-temperature density functional approach is applied for the first time to calculate thermal properties of the valence electron system in metal clusters using the spherical jellium model. Both the canonical and the grand canonical formalism are applied and their differences are discussed. We study the temperature dependence of the total free energyF(N) (including a contribution from the ionic jellium background) for spherical neutral clusters containingN atoms. We investigate, in particular, its first and second differences, Δ1F =F (N − 1) −F (N) and Δ2F =F(N + 1) +F(N − 1) − 2F(N), and discuss their possible relevance for the understanding of the mass abundance spectra observed in cluster production experiments. We show that the typical enhancement of magic spherical-shell clusters withN=8, 20, 34, 40, 58, 92, 138, 186, 254, 338, 398, 440, 508, 612..., most of which are well established experimentally, is decreasing rather fast with increasing temperatureT and cluster sizeN. We also present electronic entropies and specific heats of spherical neutral clusters. The Koopmans theorem and related approximations for calculating Δ1F and Δ2F atT > 0 are discussed. More... »

PAGES

65-81

References to SciGraph publications

  • 1991-03. The influence of shells, electron thermodynamics, and evaporation on the abundance spectra of large sodium metal clusters in ZEITSCHRIFT FÜR PHYSIK D ATOMS,MOLECULES AND CLUSTERS
  • 1991-03. Thermal electronic properties of alkali clusters in ZEITSCHRIFT FÜR PHYSIK D ATOMS,MOLECULES AND CLUSTERS
  • 1991-03. Semiclassical variational calculation of liquid-drop model coefficients for metal clusters in ZEITSCHRIFT FÜR PHYSIK D ATOMS,MOLECULES AND CLUSTERS
  • 1991-03. Electronic shells and shells of atoms in metallic clusters in ZEITSCHRIFT FÜR PHYSIK D ATOMS,MOLECULES AND CLUSTERS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01426619

    DOI

    http://dx.doi.org/10.1007/bf01426619

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1043956490


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Inorganic Chemistry", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Theoretical Physics, University of Regensburg, W-8400, Regensburg, Federal Republic of Germany", 
              "id": "http://www.grid.ac/institutes/grid.7727.5", 
              "name": [
                "Institute for Theoretical Physics, University of Regensburg, W-8400, Regensburg, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brack", 
            "givenName": "M.", 
            "id": "sg:person.012734147145.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734147145.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Theoretical Physics, University of Regensburg, W-8400, Regensburg, Federal Republic of Germany", 
              "id": "http://www.grid.ac/institutes/grid.7727.5", 
              "name": [
                "Institute for Theoretical Physics, University of Regensburg, W-8400, Regensburg, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Genzken", 
            "givenName": "O.", 
            "id": "sg:person.07543351775.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07543351775.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.5254.6", 
              "name": [
                "The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hansen", 
            "givenName": "K.", 
            "id": "sg:person.01166333534.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166333534.95"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01448252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006643026", 
              "https://doi.org/10.1007/bf01448252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01448265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052028768", 
              "https://doi.org/10.1007/bf01448265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01448248", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006195607", 
              "https://doi.org/10.1007/bf01448248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01448253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001952738", 
              "https://doi.org/10.1007/bf01448253"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1991-03", 
        "datePublishedReg": "1991-03-01", 
        "description": "The finite-temperature density functional approach is applied for the first time to calculate thermal properties of the valence electron system in metal clusters using the spherical jellium model. Both the canonical and the grand canonical formalism are applied and their differences are discussed. We study the temperature dependence of the total free energyF(N) (including a contribution from the ionic jellium background) for spherical neutral clusters containingN atoms. We investigate, in particular, its first and second differences, \u03941F =F (N \u2212 1) \u2212F (N) and \u03942F =F(N + 1) +F(N \u2212 1) \u2212 2F(N), and discuss their possible relevance for the understanding of the mass abundance spectra observed in cluster production experiments. We show that the typical enhancement of magic spherical-shell clusters withN=8, 20, 34, 40, 58, 92, 138, 186, 254, 338, 398, 440, 508, 612..., most of which are well established experimentally, is decreasing rather fast with increasing temperatureT and cluster sizeN. We also present electronic entropies and specific heats of spherical neutral clusters. The Koopmans theorem and related approximations for calculating \u03941F and \u03942F atT > 0 are discussed.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01426619", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1277743", 
            "issn": [
              "0178-7683", 
              "1431-5866"
            ], 
            "name": "Zeitschrift f\u00fcr Physik D Atoms,Molecules and Clusters", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "keywords": [
          "canonical formalism", 
          "related approximations", 
          "electron systems", 
          "spherical jellium model", 
          "grand canonical formalism", 
          "electronic entropy", 
          "specific heat", 
          "finite-temperature density functional approach", 
          "alkali metal clusters", 
          "jellium model", 
          "density functional approach", 
          "Koopmans' theorem", 
          "functional approach", 
          "second difference", 
          "temperature dependence", 
          "mass abundance spectra", 
          "valence electrons", 
          "metal clusters", 
          "valence electron systems", 
          "neutral clusters", 
          "theorem", 
          "approximation", 
          "formalism", 
          "temperatureT", 
          "entropy", 
          "abundance spectra", 
          "clusters", 
          "possible relevance", 
          "typical enhancement", 
          "properties", 
          "electrons", 
          "dependence", 
          "thermal properties", 
          "model", 
          "approach", 
          "system", 
          "spectra", 
          "first time", 
          "heat", 
          "experiments", 
          "time", 
          "enhancement", 
          "ATT", 
          "understanding", 
          "production experiments", 
          "relevance", 
          "differences"
        ], 
        "name": "Thermal properties of the valence electrons in alkali metal clusters", 
        "pagination": "65-81", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1043956490"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01426619"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01426619", 
          "https://app.dimensions.ai/details/publication/pub.1043956490"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_238.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01426619"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01426619'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01426619'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01426619'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01426619'


     

    This table displays all metadata directly associated to this object as RDF triples.

    137 TRIPLES      21 PREDICATES      76 URIs      64 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01426619 schema:about anzsrc-for:03
    2 anzsrc-for:0302
    3 schema:author N96051ee02bb940228c395ee2437e6067
    4 schema:citation sg:pub.10.1007/bf01448248
    5 sg:pub.10.1007/bf01448252
    6 sg:pub.10.1007/bf01448253
    7 sg:pub.10.1007/bf01448265
    8 schema:datePublished 1991-03
    9 schema:datePublishedReg 1991-03-01
    10 schema:description The finite-temperature density functional approach is applied for the first time to calculate thermal properties of the valence electron system in metal clusters using the spherical jellium model. Both the canonical and the grand canonical formalism are applied and their differences are discussed. We study the temperature dependence of the total free energyF(N) (including a contribution from the ionic jellium background) for spherical neutral clusters containingN atoms. We investigate, in particular, its first and second differences, Δ1F =F (N − 1) −F (N) and Δ2F =F(N + 1) +F(N − 1) − 2F(N), and discuss their possible relevance for the understanding of the mass abundance spectra observed in cluster production experiments. We show that the typical enhancement of magic spherical-shell clusters withN=8, 20, 34, 40, 58, 92, 138, 186, 254, 338, 398, 440, 508, 612..., most of which are well established experimentally, is decreasing rather fast with increasing temperatureT and cluster sizeN. We also present electronic entropies and specific heats of spherical neutral clusters. The Koopmans theorem and related approximations for calculating Δ1F and Δ2F atT > 0 are discussed.
    11 schema:genre article
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N01cd0a3eb3404ff686e6e68eef3d3922
    14 Na85858e10f9e454ca82b816693c67677
    15 sg:journal.1277743
    16 schema:keywords ATT
    17 Koopmans' theorem
    18 abundance spectra
    19 alkali metal clusters
    20 approach
    21 approximation
    22 canonical formalism
    23 clusters
    24 density functional approach
    25 dependence
    26 differences
    27 electron systems
    28 electronic entropy
    29 electrons
    30 enhancement
    31 entropy
    32 experiments
    33 finite-temperature density functional approach
    34 first time
    35 formalism
    36 functional approach
    37 grand canonical formalism
    38 heat
    39 jellium model
    40 mass abundance spectra
    41 metal clusters
    42 model
    43 neutral clusters
    44 possible relevance
    45 production experiments
    46 properties
    47 related approximations
    48 relevance
    49 second difference
    50 specific heat
    51 spectra
    52 spherical jellium model
    53 system
    54 temperature dependence
    55 temperatureT
    56 theorem
    57 thermal properties
    58 time
    59 typical enhancement
    60 understanding
    61 valence electron systems
    62 valence electrons
    63 schema:name Thermal properties of the valence electrons in alkali metal clusters
    64 schema:pagination 65-81
    65 schema:productId N35b61ca58e4849749b3520b11152dcbf
    66 Na5a7a1ed77de49ab896f2c6db154f369
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043956490
    68 https://doi.org/10.1007/bf01426619
    69 schema:sdDatePublished 2022-09-02T15:46
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher Nd22a1a99756a4bff8bc3d40d1dcb6a42
    72 schema:url https://doi.org/10.1007/bf01426619
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N01cd0a3eb3404ff686e6e68eef3d3922 schema:issueNumber 1
    77 rdf:type schema:PublicationIssue
    78 N35b61ca58e4849749b3520b11152dcbf schema:name dimensions_id
    79 schema:value pub.1043956490
    80 rdf:type schema:PropertyValue
    81 N5206aa05e8394c28a5347d848b8778ad rdf:first sg:person.07543351775.20
    82 rdf:rest Nf3df7768e21b4b338deda2bddbf306fc
    83 N96051ee02bb940228c395ee2437e6067 rdf:first sg:person.012734147145.29
    84 rdf:rest N5206aa05e8394c28a5347d848b8778ad
    85 Na5a7a1ed77de49ab896f2c6db154f369 schema:name doi
    86 schema:value 10.1007/bf01426619
    87 rdf:type schema:PropertyValue
    88 Na85858e10f9e454ca82b816693c67677 schema:volumeNumber 21
    89 rdf:type schema:PublicationVolume
    90 Nd22a1a99756a4bff8bc3d40d1dcb6a42 schema:name Springer Nature - SN SciGraph project
    91 rdf:type schema:Organization
    92 Nf3df7768e21b4b338deda2bddbf306fc rdf:first sg:person.01166333534.95
    93 rdf:rest rdf:nil
    94 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Chemical Sciences
    96 rdf:type schema:DefinedTerm
    97 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Inorganic Chemistry
    99 rdf:type schema:DefinedTerm
    100 sg:journal.1277743 schema:issn 0178-7683
    101 1431-5866
    102 schema:name Zeitschrift für Physik D Atoms,Molecules and Clusters
    103 schema:publisher Springer Nature
    104 rdf:type schema:Periodical
    105 sg:person.01166333534.95 schema:affiliation grid-institutes:grid.5254.6
    106 schema:familyName Hansen
    107 schema:givenName K.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166333534.95
    109 rdf:type schema:Person
    110 sg:person.012734147145.29 schema:affiliation grid-institutes:grid.7727.5
    111 schema:familyName Brack
    112 schema:givenName M.
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734147145.29
    114 rdf:type schema:Person
    115 sg:person.07543351775.20 schema:affiliation grid-institutes:grid.7727.5
    116 schema:familyName Genzken
    117 schema:givenName O.
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07543351775.20
    119 rdf:type schema:Person
    120 sg:pub.10.1007/bf01448248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006195607
    121 https://doi.org/10.1007/bf01448248
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/bf01448252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006643026
    124 https://doi.org/10.1007/bf01448252
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/bf01448253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001952738
    127 https://doi.org/10.1007/bf01448253
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/bf01448265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052028768
    130 https://doi.org/10.1007/bf01448265
    131 rdf:type schema:CreativeWork
    132 grid-institutes:grid.5254.6 schema:alternateName The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen, Denmark
    133 schema:name The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen, Denmark
    134 rdf:type schema:Organization
    135 grid-institutes:grid.7727.5 schema:alternateName Institute for Theoretical Physics, University of Regensburg, W-8400, Regensburg, Federal Republic of Germany
    136 schema:name Institute for Theoretical Physics, University of Regensburg, W-8400, Regensburg, Federal Republic of Germany
    137 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...