Lasing without inversion III: microwave coupling induced atomic coherence View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-06

AUTHORS

H. Fearn, M. O. Scully, S. Y. Zhu, M. Sargent

ABSTRACT

We consider the nondegenerateA quantum beat laser, and investigate the possibility of lasing without population inversion when coherence is established, between the lower levels, by applying a strong microwave field. For a specific example we calculate how much coherence may be established between the lower levels using microwave coupling. Analytical calculations are presented for both the open and closed three level atomic systems, using perturbation theory up to third order in the optical fields. Taking the linear equations, we show numerically how gain may be achieved. More... »

PAGES

495-509

References to SciGraph publications

  • 1992-06. Lasing without inversion in ZEITSCHRIFT FÜR PHYSIK D ATOMS,MOLECULES AND CLUSTERS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01426091

    DOI

    http://dx.doi.org/10.1007/bf01426091

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1003250414


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Communications Technologies", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Max-Planck Institut f\u00fcr Quantenoptik, W-8046, Garching, Germany", 
              "id": "http://www.grid.ac/institutes/grid.450272.6", 
              "name": [
                "Center for Advanced Studies and Department of Physics and Astronomy, University of New Mexico, 87131, Albuquerque, NM, USA", 
                "Max-Planck Institut f\u00fcr Quantenoptik, W-8046, Garching, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fearn", 
            "givenName": "H.", 
            "id": "sg:person.010704001306.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010704001306.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck Institut f\u00fcr Quantenoptik, W-8046, Garching, Germany", 
              "id": "http://www.grid.ac/institutes/grid.450272.6", 
              "name": [
                "Center for Advanced Studies and Department of Physics and Astronomy, University of New Mexico, 87131, Albuquerque, NM, USA", 
                "Max-Planck Institut f\u00fcr Quantenoptik, W-8046, Garching, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Scully", 
            "givenName": "M. O.", 
            "id": "sg:person.01330235722.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330235722.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck Institut f\u00fcr Quantenoptik, W-8046, Garching, Germany", 
              "id": "http://www.grid.ac/institutes/grid.450272.6", 
              "name": [
                "Center for Advanced Studies and Department of Physics and Astronomy, University of New Mexico, 87131, Albuquerque, NM, USA", 
                "Max-Planck Institut f\u00fcr Quantenoptik, W-8046, Garching, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhu", 
            "givenName": "S. Y.", 
            "id": "sg:person.013663563607.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013663563607.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.134563.6", 
              "name": [
                "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sargent", 
            "givenName": "M.", 
            "id": "sg:person.016044715770.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016044715770.57"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01426089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037227555", 
              "https://doi.org/10.1007/bf01426089"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-06", 
        "datePublishedReg": "1992-06-01", 
        "description": "We consider the nondegenerateA quantum beat laser, and investigate the possibility of lasing without population inversion when coherence is established, between the lower levels, by applying a strong microwave field. For a specific example we calculate how much coherence may be established between the lower levels using microwave coupling. Analytical calculations are presented for both the open and closed three level atomic systems, using perturbation theory up to third order in the optical fields. Taking the linear equations, we show numerically how gain may be achieved.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01426091", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1277743", 
            "issn": [
              "0178-7683", 
              "1431-5866"
            ], 
            "name": "Zeitschrift f\u00fcr Physik D Atoms,Molecules and Clusters", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "22"
          }
        ], 
        "keywords": [
          "strong microwave field", 
          "level atomic system", 
          "atomic coherence", 
          "optical field", 
          "atomic system", 
          "population inversion", 
          "microwave field", 
          "microwave coupling", 
          "perturbation theory", 
          "third order", 
          "linear equations", 
          "analytical calculations", 
          "coherence", 
          "quantum", 
          "laser", 
          "specific examples", 
          "field", 
          "coupling", 
          "calculations", 
          "equations", 
          "microwave", 
          "theory", 
          "inversion", 
          "possibility", 
          "system", 
          "order", 
          "gain", 
          "example", 
          "levels", 
          "low levels"
        ], 
        "name": "Lasing without inversion III: microwave coupling induced atomic coherence", 
        "pagination": "495-509", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1003250414"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01426091"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01426091", 
          "https://app.dimensions.ai/details/publication/pub.1003250414"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T21:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_222.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01426091"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01426091'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01426091'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01426091'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01426091'


     

    This table displays all metadata directly associated to this object as RDF triples.

    117 TRIPLES      22 PREDICATES      57 URIs      48 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01426091 schema:about anzsrc-for:10
    2 anzsrc-for:1005
    3 schema:author N7ff48bb6b6fd49feacf2150a5baa7892
    4 schema:citation sg:pub.10.1007/bf01426089
    5 schema:datePublished 1992-06
    6 schema:datePublishedReg 1992-06-01
    7 schema:description We consider the nondegenerateA quantum beat laser, and investigate the possibility of lasing without population inversion when coherence is established, between the lower levels, by applying a strong microwave field. For a specific example we calculate how much coherence may be established between the lower levels using microwave coupling. Analytical calculations are presented for both the open and closed three level atomic systems, using perturbation theory up to third order in the optical fields. Taking the linear equations, we show numerically how gain may be achieved.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N7af919efb0df40e78df3b580ad3f8d03
    12 Ne81f7235909844528f3ebc3f7f4758ec
    13 sg:journal.1277743
    14 schema:keywords analytical calculations
    15 atomic coherence
    16 atomic system
    17 calculations
    18 coherence
    19 coupling
    20 equations
    21 example
    22 field
    23 gain
    24 inversion
    25 laser
    26 level atomic system
    27 levels
    28 linear equations
    29 low levels
    30 microwave
    31 microwave coupling
    32 microwave field
    33 optical field
    34 order
    35 perturbation theory
    36 population inversion
    37 possibility
    38 quantum
    39 specific examples
    40 strong microwave field
    41 system
    42 theory
    43 third order
    44 schema:name Lasing without inversion III: microwave coupling induced atomic coherence
    45 schema:pagination 495-509
    46 schema:productId N0a97a148988449a0b31bb40c8cf399ea
    47 Ne1a3a3dca78e4c62966bac91f1ae1596
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003250414
    49 https://doi.org/10.1007/bf01426091
    50 schema:sdDatePublished 2022-06-01T21:58
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher N5832ad67c63348baab6a2979b7ebd4c6
    53 schema:url https://doi.org/10.1007/bf01426091
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N060097497a024b24934fd3c8553bd07c rdf:first sg:person.01330235722.25
    58 rdf:rest N0ecdcc2802ec419f83057f97d191b773
    59 N0a97a148988449a0b31bb40c8cf399ea schema:name doi
    60 schema:value 10.1007/bf01426091
    61 rdf:type schema:PropertyValue
    62 N0ecdcc2802ec419f83057f97d191b773 rdf:first sg:person.013663563607.94
    63 rdf:rest N942612e7f1fd46b0abb809e8382b0c97
    64 N5832ad67c63348baab6a2979b7ebd4c6 schema:name Springer Nature - SN SciGraph project
    65 rdf:type schema:Organization
    66 N7af919efb0df40e78df3b580ad3f8d03 schema:volumeNumber 22
    67 rdf:type schema:PublicationVolume
    68 N7ff48bb6b6fd49feacf2150a5baa7892 rdf:first sg:person.010704001306.47
    69 rdf:rest N060097497a024b24934fd3c8553bd07c
    70 N942612e7f1fd46b0abb809e8382b0c97 rdf:first sg:person.016044715770.57
    71 rdf:rest rdf:nil
    72 Ne1a3a3dca78e4c62966bac91f1ae1596 schema:name dimensions_id
    73 schema:value pub.1003250414
    74 rdf:type schema:PropertyValue
    75 Ne81f7235909844528f3ebc3f7f4758ec schema:issueNumber 2
    76 rdf:type schema:PublicationIssue
    77 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Technology
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Communications Technologies
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1277743 schema:issn 0178-7683
    84 1431-5866
    85 schema:name Zeitschrift für Physik D Atoms,Molecules and Clusters
    86 schema:publisher Springer Nature
    87 rdf:type schema:Periodical
    88 sg:person.010704001306.47 schema:affiliation grid-institutes:grid.450272.6
    89 schema:familyName Fearn
    90 schema:givenName H.
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010704001306.47
    92 rdf:type schema:Person
    93 sg:person.01330235722.25 schema:affiliation grid-institutes:grid.450272.6
    94 schema:familyName Scully
    95 schema:givenName M. O.
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330235722.25
    97 rdf:type schema:Person
    98 sg:person.013663563607.94 schema:affiliation grid-institutes:grid.450272.6
    99 schema:familyName Zhu
    100 schema:givenName S. Y.
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013663563607.94
    102 rdf:type schema:Person
    103 sg:person.016044715770.57 schema:affiliation grid-institutes:grid.134563.6
    104 schema:familyName Sargent
    105 schema:givenName M.
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016044715770.57
    107 rdf:type schema:Person
    108 sg:pub.10.1007/bf01426089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037227555
    109 https://doi.org/10.1007/bf01426089
    110 rdf:type schema:CreativeWork
    111 grid-institutes:grid.134563.6 schema:alternateName Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA
    112 schema:name Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA
    113 rdf:type schema:Organization
    114 grid-institutes:grid.450272.6 schema:alternateName Max-Planck Institut für Quantenoptik, W-8046, Garching, Germany
    115 schema:name Center for Advanced Studies and Department of Physics and Astronomy, University of New Mexico, 87131, Albuquerque, NM, USA
    116 Max-Planck Institut für Quantenoptik, W-8046, Garching, Germany
    117 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...