Fully developed chaotic 1−d maps View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1984-06

AUTHORS

G. Györgyi, P. Szépfalusy

ABSTRACT

Single-hump 1−d maps are investigated which generate ergodic process on an interval mapped everywhere two-to-one onto itself. Introducing a new transformation transverse to conjugation it is shown that such maps are related by smooth transformations to each other. It is found that each of the families consisting of conjugate maps contains a map everywhere expanding and producing ergodic iterations according to the uniform probability density. The general framework is used to construct maps together with their probability density functions. Quantities characterizing the dynamics are calculated and their parameter dependence while maintaining the fully developed chaotic state is studied. Furthermore, universal maps exhibiting fully developed chaos are considered. More... »

PAGES

179-186

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01420570

DOI

http://dx.doi.org/10.1007/bf01420570

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018974396


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "E\u00f6tv\u00f6s Lor\u00e1nd University", 
          "id": "https://www.grid.ac/institutes/grid.5591.8", 
          "name": [
            "Institute for Theoretical Physics, E\u00f6tv\u00f6s University, P.O. Box 327, H-1445, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gy\u00f6rgyi", 
        "givenName": "G.", 
        "id": "sg:person.01207275035.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207275035.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MTA Wigner Research Centre for Physics", 
          "id": "https://www.grid.ac/institutes/grid.419766.b", 
          "name": [
            "Institute for Theoretical Physics, E\u00f6tv\u00f6s University, P.O. Box 327, H-1445, Budapest, Hungary", 
            "Central Research Institute for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sz\u00e9pfalusy", 
        "givenName": "P.", 
        "id": "sg:person.01267453762.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267453762.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01613148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013453626", 
          "https://doi.org/10.1007/bf01613148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01613148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013453626", 
          "https://doi.org/10.1007/bf01613148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02698686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016204036", 
          "https://doi.org/10.1007/bf02698686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1979.tb29459.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019065654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01020332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023847984", 
          "https://doi.org/10.1007/bf01020332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(82)90033-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028055904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(82)90033-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028055904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01011430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031950626", 
          "https://doi.org/10.1007/bf01011430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01941800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036786184", 
          "https://doi.org/10.1007/bf01941800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01941800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036786184", 
          "https://doi.org/10.1007/bf01941800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(80)90013-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045796569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(80)90013-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045796569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01208571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046374783", 
          "https://doi.org/10.1007/bf01208571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01208571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046374783", 
          "https://doi.org/10.1007/bf01208571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(82)90089-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048187809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(82)90089-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048187809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1973-0335758-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048197270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01941319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051661871", 
          "https://doi.org/10.1007/bf01941319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01941319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051661871", 
          "https://doi.org/10.1007/bf01941319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/12/3/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059064818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.23.1419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060469098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.23.1419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060469098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.47.975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060786934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.47.975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060786934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.48.1507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060787115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.48.1507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060787115"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-06", 
    "datePublishedReg": "1984-06-01", 
    "description": "Single-hump 1\u2212d maps are investigated which generate ergodic process on an interval mapped everywhere two-to-one onto itself. Introducing a new transformation transverse to conjugation it is shown that such maps are related by smooth transformations to each other. It is found that each of the families consisting of conjugate maps contains a map everywhere expanding and producing ergodic iterations according to the uniform probability density. The general framework is used to construct maps together with their probability density functions. Quantities characterizing the dynamics are calculated and their parameter dependence while maintaining the fully developed chaotic state is studied. Furthermore, universal maps exhibiting fully developed chaos are considered.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01420570", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1285002", 
        "issn": [
          "0722-3277", 
          "1431-584X"
        ], 
        "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "name": "Fully developed chaotic 1\u2212d maps", 
    "pagination": "179-186", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5a67fd59c792993583841e135213bdeaeb2b165626e84b1bb4edc71ec6980f23"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01420570"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018974396"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01420570", 
      "https://app.dimensions.ai/details/publication/pub.1018974396"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46772_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01420570"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01420570'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01420570'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01420570'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01420570'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01420570 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nb34d654b066b465cb6e667487382827f
4 schema:citation sg:pub.10.1007/bf01011430
5 sg:pub.10.1007/bf01020332
6 sg:pub.10.1007/bf01208571
7 sg:pub.10.1007/bf01613148
8 sg:pub.10.1007/bf01941319
9 sg:pub.10.1007/bf01941800
10 sg:pub.10.1007/bf02698686
11 https://doi.org/10.1016/0167-2789(80)90013-5
12 https://doi.org/10.1016/0370-1573(82)90089-8
13 https://doi.org/10.1016/0375-9601(82)90033-0
14 https://doi.org/10.1088/0305-4470/12/3/004
15 https://doi.org/10.1090/s0002-9947-1973-0335758-1
16 https://doi.org/10.1103/physreva.23.1419
17 https://doi.org/10.1103/physrevlett.47.975
18 https://doi.org/10.1103/physrevlett.48.1507
19 https://doi.org/10.1111/j.1749-6632.1979.tb29459.x
20 schema:datePublished 1984-06
21 schema:datePublishedReg 1984-06-01
22 schema:description Single-hump 1−d maps are investigated which generate ergodic process on an interval mapped everywhere two-to-one onto itself. Introducing a new transformation transverse to conjugation it is shown that such maps are related by smooth transformations to each other. It is found that each of the families consisting of conjugate maps contains a map everywhere expanding and producing ergodic iterations according to the uniform probability density. The general framework is used to construct maps together with their probability density functions. Quantities characterizing the dynamics are calculated and their parameter dependence while maintaining the fully developed chaotic state is studied. Furthermore, universal maps exhibiting fully developed chaos are considered.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N5d6e33abb1a44b928ce7fc4d1a0d233c
27 Nde7bc77275fc4b3e8f28f69c7eeddeea
28 sg:journal.1285002
29 schema:name Fully developed chaotic 1−d maps
30 schema:pagination 179-186
31 schema:productId N305d655b664d4ecb9ed9e998f610570c
32 N3427eeaf4ea646f0bb2a3b69e869ba99
33 Nafea5474cef4481a9795d7b1fe41ef19
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018974396
35 https://doi.org/10.1007/bf01420570
36 schema:sdDatePublished 2019-04-11T13:34
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Ne207dba86cb1440b880fa66ee6b384cf
39 schema:url http://link.springer.com/10.1007/BF01420570
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N305d655b664d4ecb9ed9e998f610570c schema:name doi
44 schema:value 10.1007/bf01420570
45 rdf:type schema:PropertyValue
46 N3427eeaf4ea646f0bb2a3b69e869ba99 schema:name readcube_id
47 schema:value 5a67fd59c792993583841e135213bdeaeb2b165626e84b1bb4edc71ec6980f23
48 rdf:type schema:PropertyValue
49 N5d6e33abb1a44b928ce7fc4d1a0d233c schema:issueNumber 2
50 rdf:type schema:PublicationIssue
51 Nafea5474cef4481a9795d7b1fe41ef19 schema:name dimensions_id
52 schema:value pub.1018974396
53 rdf:type schema:PropertyValue
54 Nb34d654b066b465cb6e667487382827f rdf:first sg:person.01207275035.31
55 rdf:rest Nf818e5c26cf24bed8df811a82add30a0
56 Nde7bc77275fc4b3e8f28f69c7eeddeea schema:volumeNumber 55
57 rdf:type schema:PublicationVolume
58 Ne207dba86cb1440b880fa66ee6b384cf schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nf818e5c26cf24bed8df811a82add30a0 rdf:first sg:person.01267453762.09
61 rdf:rest rdf:nil
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
66 schema:name Statistics
67 rdf:type schema:DefinedTerm
68 sg:journal.1285002 schema:issn 0722-3277
69 1431-584X
70 schema:name Zeitschrift für Physik B Condensed Matter
71 rdf:type schema:Periodical
72 sg:person.01207275035.31 schema:affiliation https://www.grid.ac/institutes/grid.5591.8
73 schema:familyName Györgyi
74 schema:givenName G.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207275035.31
76 rdf:type schema:Person
77 sg:person.01267453762.09 schema:affiliation https://www.grid.ac/institutes/grid.419766.b
78 schema:familyName Szépfalusy
79 schema:givenName P.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267453762.09
81 rdf:type schema:Person
82 sg:pub.10.1007/bf01011430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031950626
83 https://doi.org/10.1007/bf01011430
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf01020332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023847984
86 https://doi.org/10.1007/bf01020332
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf01208571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046374783
89 https://doi.org/10.1007/bf01208571
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf01613148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013453626
92 https://doi.org/10.1007/bf01613148
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf01941319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051661871
95 https://doi.org/10.1007/bf01941319
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf01941800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036786184
98 https://doi.org/10.1007/bf01941800
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf02698686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016204036
101 https://doi.org/10.1007/bf02698686
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0167-2789(80)90013-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045796569
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0370-1573(82)90089-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048187809
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/0375-9601(82)90033-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028055904
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1088/0305-4470/12/3/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059064818
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1090/s0002-9947-1973-0335758-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048197270
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physreva.23.1419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060469098
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevlett.47.975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060786934
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevlett.48.1507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060787115
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1111/j.1749-6632.1979.tb29459.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019065654
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.419766.b schema:alternateName MTA Wigner Research Centre for Physics
122 schema:name Central Research Institute for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary
123 Institute for Theoretical Physics, Eötvös University, P.O. Box 327, H-1445, Budapest, Hungary
124 rdf:type schema:Organization
125 https://www.grid.ac/institutes/grid.5591.8 schema:alternateName Eötvös Loránd University
126 schema:name Institute for Theoretical Physics, Eötvös University, P.O. Box 327, H-1445, Budapest, Hungary
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...