Non-adiabatic effects in the time dependent level crossing problem View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1984-06

AUTHORS

A. Góźdź, E. Werner, M. Brack

ABSTRACT

We discuss the exact solution of the time-dependent Schrödinger equation for a system of two crossing levels with a residual interaction. In contrast to the familiar Landau-Zener (LZ) solution used in most applications, we allow for more general boundary conditions; in particular we treat explicitly the case of afinite interval around the crossing point. The exact jumping probability is shown to be extremely sensitive to these boundary conditions; in many realistic cases it is found to be smaller than the LZ value by several orders of magnitude. We also compare the exact excitation energy to the one obtained in the usual cranking approach. More... »

PAGES

159-165

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01415629

DOI

http://dx.doi.org/10.1007/bf01415629

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013505142


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, The University of Maria Sklodowska-Curie, Pl-20-031, Lublin, Poland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, Germany", 
            "Department of Physics, The University of Maria Sklodowska-Curie, Pl-20-031, Lublin, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00f3\u017ad\u017a", 
        "givenName": "A.", 
        "id": "sg:person.014577734672.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014577734672.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7727.5", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Werner", 
        "givenName": "E.", 
        "id": "sg:person.013275303046.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013275303046.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7727.5", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brack", 
        "givenName": "M.", 
        "id": "sg:person.012734147145.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734147145.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-88396-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044405369", 
          "https://doi.org/10.1007/978-3-642-88396-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-06", 
    "datePublishedReg": "1984-06-01", 
    "description": "We discuss the exact solution of the time-dependent Schr\u00f6dinger equation for a system of two crossing levels with a residual interaction. In contrast to the familiar Landau-Zener (LZ) solution used in most applications, we allow for more general boundary conditions; in particular we treat explicitly the case of afinite interval around the crossing point. The exact jumping probability is shown to be extremely sensitive to these boundary conditions; in many realistic cases it is found to be smaller than the LZ value by several orders of magnitude. We also compare the exact excitation energy to the one obtained in the usual cranking approach.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01415629", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1313831", 
        "issn": [
          "0939-7922", 
          "1431-5831"
        ], 
        "name": "Zeitschrift f\u00fcr Physik A Hadrons and nuclei", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "319"
      }
    ], 
    "keywords": [
      "boundary conditions", 
      "general boundary conditions", 
      "orders of magnitude", 
      "most applications", 
      "realistic case", 
      "exact solution", 
      "solution", 
      "conditions", 
      "crossing point", 
      "energy", 
      "equations", 
      "applications", 
      "level-crossing problem", 
      "system", 
      "magnitude", 
      "order", 
      "crossing problem", 
      "crossing levels", 
      "point", 
      "values", 
      "problem", 
      "approach", 
      "effect", 
      "one", 
      "non-adiabatic effects", 
      "cases", 
      "jumping probability", 
      "interaction", 
      "excitation energy", 
      "probability", 
      "exact excitation energies", 
      "interval", 
      "levels", 
      "contrast", 
      "time-dependent Schr\u00f6dinger equation", 
      "Schr\u00f6dinger equation", 
      "residual interaction"
    ], 
    "name": "Non-adiabatic effects in the time dependent level crossing problem", 
    "pagination": "159-165", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013505142"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01415629"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01415629", 
      "https://app.dimensions.ai/details/publication/pub.1013505142"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_168.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01415629"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01415629'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01415629'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01415629'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01415629'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      21 PREDICATES      63 URIs      54 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01415629 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N12800f8ffead44a5be7ee2b27afc5f41
4 schema:citation sg:pub.10.1007/978-3-642-88396-5
5 schema:datePublished 1984-06
6 schema:datePublishedReg 1984-06-01
7 schema:description We discuss the exact solution of the time-dependent Schrödinger equation for a system of two crossing levels with a residual interaction. In contrast to the familiar Landau-Zener (LZ) solution used in most applications, we allow for more general boundary conditions; in particular we treat explicitly the case of afinite interval around the crossing point. The exact jumping probability is shown to be extremely sensitive to these boundary conditions; in many realistic cases it is found to be smaller than the LZ value by several orders of magnitude. We also compare the exact excitation energy to the one obtained in the usual cranking approach.
8 schema:genre article
9 schema:isAccessibleForFree true
10 schema:isPartOf N74144a3757454730a2ff7837cd184717
11 Nff3f0c7bd08145aa82cb1a66593619f6
12 sg:journal.1313831
13 schema:keywords Schrödinger equation
14 applications
15 approach
16 boundary conditions
17 cases
18 conditions
19 contrast
20 crossing levels
21 crossing point
22 crossing problem
23 effect
24 energy
25 equations
26 exact excitation energies
27 exact solution
28 excitation energy
29 general boundary conditions
30 interaction
31 interval
32 jumping probability
33 level-crossing problem
34 levels
35 magnitude
36 most applications
37 non-adiabatic effects
38 one
39 order
40 orders of magnitude
41 point
42 probability
43 problem
44 realistic case
45 residual interaction
46 solution
47 system
48 time-dependent Schrödinger equation
49 values
50 schema:name Non-adiabatic effects in the time dependent level crossing problem
51 schema:pagination 159-165
52 schema:productId N042793e389e04a09ad0da01e9e3af4a3
53 N484fcf56d0dc4eba8899d511210e46bc
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013505142
55 https://doi.org/10.1007/bf01415629
56 schema:sdDatePublished 2022-09-02T15:45
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nc2abbdfed1844bbcbc51418cfe34c0da
59 schema:url https://doi.org/10.1007/bf01415629
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N042793e389e04a09ad0da01e9e3af4a3 schema:name dimensions_id
64 schema:value pub.1013505142
65 rdf:type schema:PropertyValue
66 N12800f8ffead44a5be7ee2b27afc5f41 rdf:first sg:person.014577734672.46
67 rdf:rest Nb53fd63b6e1d4b2eb3c2d8ca00df5a49
68 N484fcf56d0dc4eba8899d511210e46bc schema:name doi
69 schema:value 10.1007/bf01415629
70 rdf:type schema:PropertyValue
71 N74144a3757454730a2ff7837cd184717 schema:issueNumber 2
72 rdf:type schema:PublicationIssue
73 Nb53fd63b6e1d4b2eb3c2d8ca00df5a49 rdf:first sg:person.013275303046.05
74 rdf:rest Nd35da2e55b5241f582d28a38a4ac1274
75 Nc2abbdfed1844bbcbc51418cfe34c0da schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nd35da2e55b5241f582d28a38a4ac1274 rdf:first sg:person.012734147145.29
78 rdf:rest rdf:nil
79 Nff3f0c7bd08145aa82cb1a66593619f6 schema:volumeNumber 319
80 rdf:type schema:PublicationVolume
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
85 schema:name Pure Mathematics
86 rdf:type schema:DefinedTerm
87 sg:journal.1313831 schema:issn 0939-7922
88 1431-5831
89 schema:name Zeitschrift für Physik A Hadrons and nuclei
90 schema:publisher Springer Nature
91 rdf:type schema:Periodical
92 sg:person.012734147145.29 schema:affiliation grid-institutes:grid.7727.5
93 schema:familyName Brack
94 schema:givenName M.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734147145.29
96 rdf:type schema:Person
97 sg:person.013275303046.05 schema:affiliation grid-institutes:grid.7727.5
98 schema:familyName Werner
99 schema:givenName E.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013275303046.05
101 rdf:type schema:Person
102 sg:person.014577734672.46 schema:affiliation grid-institutes:None
103 schema:familyName Góźdź
104 schema:givenName A.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014577734672.46
106 rdf:type schema:Person
107 sg:pub.10.1007/978-3-642-88396-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044405369
108 https://doi.org/10.1007/978-3-642-88396-5
109 rdf:type schema:CreativeWork
110 grid-institutes:None schema:alternateName Department of Physics, The University of Maria Sklodowska-Curie, Pl-20-031, Lublin, Poland
111 schema:name Department of Physics, The University of Maria Sklodowska-Curie, Pl-20-031, Lublin, Poland
112 Institut für Theoretische Physik, Universität Regensburg, Germany
113 rdf:type schema:Organization
114 grid-institutes:grid.7727.5 schema:alternateName Institut für Theoretische Physik, Universität Regensburg, Germany
115 schema:name Institut für Theoretische Physik, Universität Regensburg, Germany
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...