Partial resummation ofℏ-expansion of the Bloch density for non local potentials View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1980-03

AUTHORS

M. Durand, P. Schuck, M. Brack

ABSTRACT

The Wigner-Kirkwoodℏ-expansion of the Wigner transform of the Bloch density can be resummed in the case of non local potentials if we keep only up to second order derivatives of the Wigner transform of the non-local potential with respect to the phase space variables. We also investigate a second approximation to the Bloch density where care has been taken with respect to a consistentℏ expansion. For a one dimensional example we calculate the smooth part of the density and the corresponding energy demonstrating that both approximations to the Bloch-density yield well defined average densitiesand energies. More... »

PAGES

87-90

References to SciGraph publications

  • 1978-12. A semiclassical density matrix valid beyond the classically allowed region in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 1955-10. Zur Begründung der Thomas-Fermischen statistischen Theorie in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01415620

    DOI

    http://dx.doi.org/10.1007/bf01415620

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040528268


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut des Sciences Nucl\u00e9aires, Grenoble, France", 
              "id": "http://www.grid.ac/institutes/grid.472561.3", 
              "name": [
                "Institut des Sciences Nucl\u00e9aires, Grenoble, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Durand", 
            "givenName": "M.", 
            "id": "sg:person.015304374333.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015304374333.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut Laue-Langevin, Grenoble, France", 
              "id": "http://www.grid.ac/institutes/grid.156520.5", 
              "name": [
                "Institut Laue-Langevin, Grenoble, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schuck", 
            "givenName": "P.", 
            "id": "sg:person.01310001471.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310001471.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, Regensburg, Federal Republic of Germany", 
              "id": "http://www.grid.ac/institutes/grid.7727.5", 
              "name": [
                "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, Regensburg, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brack", 
            "givenName": "M.", 
            "id": "sg:person.012734147145.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734147145.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01408895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002298892", 
              "https://doi.org/10.1007/bf01408895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01375130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050722590", 
              "https://doi.org/10.1007/bf01375130"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1980-03", 
        "datePublishedReg": "1980-03-01", 
        "description": "The Wigner-Kirkwood\u210f-expansion of the Wigner transform of the Bloch density can be resummed in the case of non local potentials if we keep only up to second order derivatives of the Wigner transform of the non-local potential with respect to the phase space variables. We also investigate a second approximation to the Bloch density where care has been taken with respect to a consistent\u210f expansion. For a one dimensional example we calculate the smooth part of the density and the corresponding energy demonstrating that both approximations to the Bloch-density yield well defined average densitiesand energies.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01415620", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1313831", 
            "issn": [
              "0939-7922", 
              "1431-5831"
            ], 
            "name": "Zeitschrift f\u00fcr Physik A Hadrons and nuclei", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "296"
          }
        ], 
        "keywords": [
          "non-local potential", 
          "Wigner transform", 
          "local potential", 
          "phase space variables", 
          "partial resummation", 
          "density", 
          "energy", 
          "Wigner", 
          "second approximation", 
          "approximation", 
          "resummation", 
          "smooth part", 
          "potential", 
          "space variables", 
          "expansion", 
          "transform", 
          "second-order derivatives", 
          "dimensional examples", 
          "respect", 
          "yield", 
          "example", 
          "cases", 
          "order derivatives", 
          "care", 
          "part", 
          "derivatives", 
          "variables", 
          "Bloch density"
        ], 
        "name": "Partial resummation of\u210f-expansion of the Bloch density for non local potentials", 
        "pagination": "87-90", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040528268"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01415620"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01415620", 
          "https://app.dimensions.ai/details/publication/pub.1040528268"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_169.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01415620"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01415620'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01415620'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01415620'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01415620'


     

    This table displays all metadata directly associated to this object as RDF triples.

    113 TRIPLES      21 PREDICATES      55 URIs      45 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01415620 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author Ne9b49daa85934de99bd016f22bdfbf89
    4 schema:citation sg:pub.10.1007/bf01375130
    5 sg:pub.10.1007/bf01408895
    6 schema:datePublished 1980-03
    7 schema:datePublishedReg 1980-03-01
    8 schema:description The Wigner-Kirkwoodℏ-expansion of the Wigner transform of the Bloch density can be resummed in the case of non local potentials if we keep only up to second order derivatives of the Wigner transform of the non-local potential with respect to the phase space variables. We also investigate a second approximation to the Bloch density where care has been taken with respect to a consistentℏ expansion. For a one dimensional example we calculate the smooth part of the density and the corresponding energy demonstrating that both approximations to the Bloch-density yield well defined average densitiesand energies.
    9 schema:genre article
    10 schema:isAccessibleForFree true
    11 schema:isPartOf N6c37405007134b0ab15a783faa433c54
    12 N858e65b56309484880a264901f101d3e
    13 sg:journal.1313831
    14 schema:keywords Bloch density
    15 Wigner
    16 Wigner transform
    17 approximation
    18 care
    19 cases
    20 density
    21 derivatives
    22 dimensional examples
    23 energy
    24 example
    25 expansion
    26 local potential
    27 non-local potential
    28 order derivatives
    29 part
    30 partial resummation
    31 phase space variables
    32 potential
    33 respect
    34 resummation
    35 second approximation
    36 second-order derivatives
    37 smooth part
    38 space variables
    39 transform
    40 variables
    41 yield
    42 schema:name Partial resummation ofℏ-expansion of the Bloch density for non local potentials
    43 schema:pagination 87-90
    44 schema:productId N4b7131cc146a42a29d8071809bafa548
    45 Nd0ca85858b534513b55c0a2773b0ed5b
    46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040528268
    47 https://doi.org/10.1007/bf01415620
    48 schema:sdDatePublished 2022-10-01T06:27
    49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    50 schema:sdPublisher Ne15f268527af48bab21aa04f119b01f3
    51 schema:url https://doi.org/10.1007/bf01415620
    52 sgo:license sg:explorer/license/
    53 sgo:sdDataset articles
    54 rdf:type schema:ScholarlyArticle
    55 N02a69ba787fc480a86485e55fc3efa43 rdf:first sg:person.012734147145.29
    56 rdf:rest rdf:nil
    57 N2e302eb4f5fe438684e6d733dc40e7cc rdf:first sg:person.01310001471.42
    58 rdf:rest N02a69ba787fc480a86485e55fc3efa43
    59 N4b7131cc146a42a29d8071809bafa548 schema:name dimensions_id
    60 schema:value pub.1040528268
    61 rdf:type schema:PropertyValue
    62 N6c37405007134b0ab15a783faa433c54 schema:issueNumber 1
    63 rdf:type schema:PublicationIssue
    64 N858e65b56309484880a264901f101d3e schema:volumeNumber 296
    65 rdf:type schema:PublicationVolume
    66 Nd0ca85858b534513b55c0a2773b0ed5b schema:name doi
    67 schema:value 10.1007/bf01415620
    68 rdf:type schema:PropertyValue
    69 Ne15f268527af48bab21aa04f119b01f3 schema:name Springer Nature - SN SciGraph project
    70 rdf:type schema:Organization
    71 Ne9b49daa85934de99bd016f22bdfbf89 rdf:first sg:person.015304374333.77
    72 rdf:rest N2e302eb4f5fe438684e6d733dc40e7cc
    73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Mathematical Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Applied Mathematics
    78 rdf:type schema:DefinedTerm
    79 sg:journal.1313831 schema:issn 0939-7922
    80 1431-5831
    81 schema:name Zeitschrift für Physik A Hadrons and nuclei
    82 schema:publisher Springer Nature
    83 rdf:type schema:Periodical
    84 sg:person.012734147145.29 schema:affiliation grid-institutes:grid.7727.5
    85 schema:familyName Brack
    86 schema:givenName M.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734147145.29
    88 rdf:type schema:Person
    89 sg:person.01310001471.42 schema:affiliation grid-institutes:grid.156520.5
    90 schema:familyName Schuck
    91 schema:givenName P.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310001471.42
    93 rdf:type schema:Person
    94 sg:person.015304374333.77 schema:affiliation grid-institutes:grid.472561.3
    95 schema:familyName Durand
    96 schema:givenName M.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015304374333.77
    98 rdf:type schema:Person
    99 sg:pub.10.1007/bf01375130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050722590
    100 https://doi.org/10.1007/bf01375130
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bf01408895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002298892
    103 https://doi.org/10.1007/bf01408895
    104 rdf:type schema:CreativeWork
    105 grid-institutes:grid.156520.5 schema:alternateName Institut Laue-Langevin, Grenoble, France
    106 schema:name Institut Laue-Langevin, Grenoble, France
    107 rdf:type schema:Organization
    108 grid-institutes:grid.472561.3 schema:alternateName Institut des Sciences Nucléaires, Grenoble, France
    109 schema:name Institut des Sciences Nucléaires, Grenoble, France
    110 rdf:type schema:Organization
    111 grid-institutes:grid.7727.5 schema:alternateName Institut für Theoretische Physik, Universität Regensburg, Regensburg, Federal Republic of Germany
    112 schema:name Institut für Theoretische Physik, Universität Regensburg, Regensburg, Federal Republic of Germany
    113 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...