A semiclassical density matrix valid beyond the classically allowed region View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1978-12

AUTHORS

M. Durand, M. Brack, P. Schuck

ABSTRACT

We study semiclassical approximations to the density matrix of a system of Fermions in a one body potential. We derive an expression for the propagator in terms of first and second derivatives of the potential. Our result is thus exact for a harmonic oscillator potential and is equivalent to a partial resummation of the Wigner-Kirkwoodh-expansion. It leads to densities which are well-defined also in the classically forbidden region. More... »

PAGES

381-392

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01408895

DOI

http://dx.doi.org/10.1007/bf01408895

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002298892


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut des Sciences Nucl\u00e9aires (IN2 P3-U.S.M.G.), Grenoble, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institut des Sciences Nucl\u00e9aires (IN2 P3-U.S.M.G.), Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Durand", 
        "givenName": "M.", 
        "id": "sg:person.015304374333.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015304374333.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Laue Langevin, Grenoble, France", 
          "id": "http://www.grid.ac/institutes/grid.156520.5", 
          "name": [
            "Institut Laue Langevin, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brack", 
        "givenName": "M.", 
        "id": "sg:person.012734147145.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734147145.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Laue Langevin, Grenoble, France", 
          "id": "http://www.grid.ac/institutes/grid.156520.5", 
          "name": [
            "Institut Laue Langevin, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schuck", 
        "givenName": "P.", 
        "id": "sg:person.01310001471.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310001471.42"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1978-12", 
    "datePublishedReg": "1978-12-01", 
    "description": "We study semiclassical approximations to the density matrix of a system of Fermions in a one body potential. We derive an expression for the propagator in terms of first and second derivatives of the potential. Our result is thus exact for a harmonic oscillator potential and is equivalent to a partial resummation of the Wigner-Kirkwoodh-expansion. It leads to densities which are well-defined also in the classically forbidden region.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01408895", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1313831", 
        "issn": [
          "0939-7922", 
          "1431-5831"
        ], 
        "name": "Zeitschrift f\u00fcr Physik A Hadrons and nuclei", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "286"
      }
    ], 
    "keywords": [
      "expression", 
      "potential", 
      "region", 
      "results", 
      "derivatives", 
      "expansion", 
      "system", 
      "terms", 
      "density", 
      "matrix", 
      "density matrix", 
      "system of fermions", 
      "semiclassical density matrix", 
      "semiclassical approximation", 
      "body potential", 
      "second derivative", 
      "harmonic oscillator potential", 
      "oscillator potential", 
      "partial resummation", 
      "approximation", 
      "fermions", 
      "propagator", 
      "resummation"
    ], 
    "name": "A semiclassical density matrix valid beyond the classically allowed region", 
    "pagination": "381-392", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002298892"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01408895"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01408895", 
      "https://app.dimensions.ai/details/publication/pub.1002298892"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_109.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01408895"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01408895'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01408895'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01408895'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01408895'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      20 PREDICATES      48 URIs      40 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01408895 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N4693801fe1fe411b8268f6174a5f7870
4 schema:datePublished 1978-12
5 schema:datePublishedReg 1978-12-01
6 schema:description We study semiclassical approximations to the density matrix of a system of Fermions in a one body potential. We derive an expression for the propagator in terms of first and second derivatives of the potential. Our result is thus exact for a harmonic oscillator potential and is equivalent to a partial resummation of the Wigner-Kirkwoodh-expansion. It leads to densities which are well-defined also in the classically forbidden region.
7 schema:genre article
8 schema:isAccessibleForFree true
9 schema:isPartOf N66490df1bb864da09e25fbc24ac0f769
10 Nf1056b1f8322444da4328aaf327f1b44
11 sg:journal.1313831
12 schema:keywords approximation
13 body potential
14 density
15 density matrix
16 derivatives
17 expansion
18 expression
19 fermions
20 harmonic oscillator potential
21 matrix
22 oscillator potential
23 partial resummation
24 potential
25 propagator
26 region
27 results
28 resummation
29 second derivative
30 semiclassical approximation
31 semiclassical density matrix
32 system
33 system of fermions
34 terms
35 schema:name A semiclassical density matrix valid beyond the classically allowed region
36 schema:pagination 381-392
37 schema:productId Na4d5c8392964454091052ee0d453d0d9
38 Nea055f9ad1a3479fa83af5bf1d8cb58a
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002298892
40 https://doi.org/10.1007/bf01408895
41 schema:sdDatePublished 2022-09-02T15:44
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N49d5f960ea79452d8dd8760d7f658dac
44 schema:url https://doi.org/10.1007/bf01408895
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N4693801fe1fe411b8268f6174a5f7870 rdf:first sg:person.015304374333.77
49 rdf:rest Nc056cc63f7b840a483ef6b231fbfcfac
50 N49d5f960ea79452d8dd8760d7f658dac schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N66490df1bb864da09e25fbc24ac0f769 schema:issueNumber 4
53 rdf:type schema:PublicationIssue
54 N7ab89fb82cdd40ddb5d3d0946b6c0ab2 rdf:first sg:person.01310001471.42
55 rdf:rest rdf:nil
56 Na4d5c8392964454091052ee0d453d0d9 schema:name doi
57 schema:value 10.1007/bf01408895
58 rdf:type schema:PropertyValue
59 Nc056cc63f7b840a483ef6b231fbfcfac rdf:first sg:person.012734147145.29
60 rdf:rest N7ab89fb82cdd40ddb5d3d0946b6c0ab2
61 Nea055f9ad1a3479fa83af5bf1d8cb58a schema:name dimensions_id
62 schema:value pub.1002298892
63 rdf:type schema:PropertyValue
64 Nf1056b1f8322444da4328aaf327f1b44 schema:volumeNumber 286
65 rdf:type schema:PublicationVolume
66 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
67 schema:name Medical and Health Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
70 schema:name Clinical Sciences
71 rdf:type schema:DefinedTerm
72 sg:journal.1313831 schema:issn 0939-7922
73 1431-5831
74 schema:name Zeitschrift für Physik A Hadrons and nuclei
75 schema:publisher Springer Nature
76 rdf:type schema:Periodical
77 sg:person.012734147145.29 schema:affiliation grid-institutes:grid.156520.5
78 schema:familyName Brack
79 schema:givenName M.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734147145.29
81 rdf:type schema:Person
82 sg:person.01310001471.42 schema:affiliation grid-institutes:grid.156520.5
83 schema:familyName Schuck
84 schema:givenName P.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310001471.42
86 rdf:type schema:Person
87 sg:person.015304374333.77 schema:affiliation grid-institutes:None
88 schema:familyName Durand
89 schema:givenName M.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015304374333.77
91 rdf:type schema:Person
92 grid-institutes:None schema:alternateName Institut des Sciences Nucléaires (IN2 P3-U.S.M.G.), Grenoble, France
93 schema:name Institut des Sciences Nucléaires (IN2 P3-U.S.M.G.), Grenoble, France
94 rdf:type schema:Organization
95 grid-institutes:grid.156520.5 schema:alternateName Institut Laue Langevin, Grenoble, France
96 schema:name Institut Laue Langevin, Grenoble, France
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...