Local convergence analysis for partitioned quasi-Newton updates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1982-10

AUTHORS

A. Griewank, Ph. L. Toint

ABSTRACT

This paper considers local convergence properties of inexact partitioned quasi-Newton algorithms for the solution of certain non-linear equations and, in particular, the optimization of partially separable objective functions. Using the bounded deterioration principle, one obtains local and linear convergence, which impliesQ-superlinear convergence under the usual conditions on the quasi-Newton updates. For the optimization case, these conditions are shown to be satisfied by any sequence of updates within the convex Broyden class, even if some Hessians are singular at the minimizer. Finally, local andQ-superlinear convergence is established for an inexact partitioned variable metric method under mild assumptions on the initial Hessian approximations. More... »

PAGES

429-448

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01407874

DOI

http://dx.doi.org/10.1007/bf01407874

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020894237


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Namur", 
          "id": "https://www.grid.ac/institutes/grid.6520.1", 
          "name": [
            "Department of Southern Mathematics Methodist University, Dallas, Texas, USA", 
            "Department of Mathematics, Facultes Universitaires de Namur, Namur, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Griewank", 
        "givenName": "A.", 
        "id": "sg:person.0730474155.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730474155.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Namur", 
          "id": "https://www.grid.ac/institutes/grid.6520.1", 
          "name": [
            "Department of Southern Mathematics Methodist University, Dallas, Texas, USA", 
            "Department of Mathematics, Facultes Universitaires de Namur, Namur, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toint", 
        "givenName": "Ph. L.", 
        "id": "sg:person.011563043555.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011563043555.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01589345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002995969", 
          "https://doi.org/10.1007/bf01589345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comjnl/13.3.317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007597686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01681353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017545953", 
          "https://doi.org/10.1007/bf01681353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01681353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017545953", 
          "https://doi.org/10.1007/bf01681353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02252133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028853824", 
          "https://doi.org/10.1007/bf02252133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02252133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028853824", 
          "https://doi.org/10.1007/bf02252133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01397884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034387212", 
          "https://doi.org/10.1007/bf01397884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01399316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039339277", 
          "https://doi.org/10.1007/bf01399316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01399316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039339277", 
          "https://doi.org/10.1007/bf01399316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1974-0343581-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041195304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02260741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041946918", 
          "https://doi.org/10.1007/bf02260741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02260741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041946918", 
          "https://doi.org/10.1007/bf02260741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-468660-1.50007-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051041415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0718067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0719025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1019005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062861067"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1982-10", 
    "datePublishedReg": "1982-10-01", 
    "description": "This paper considers local convergence properties of inexact partitioned quasi-Newton algorithms for the solution of certain non-linear equations and, in particular, the optimization of partially separable objective functions. Using the bounded deterioration principle, one obtains local and linear convergence, which impliesQ-superlinear convergence under the usual conditions on the quasi-Newton updates. For the optimization case, these conditions are shown to be satisfied by any sequence of updates within the convex Broyden class, even if some Hessians are singular at the minimizer. Finally, local andQ-superlinear convergence is established for an inexact partitioned variable metric method under mild assumptions on the initial Hessian approximations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01407874", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136759", 
        "issn": [
          "0029-599X", 
          "0945-3245"
        ], 
        "name": "Numerische Mathematik", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "name": "Local convergence analysis for partitioned quasi-Newton updates", 
    "pagination": "429-448", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "638d9a33210e70e1047fd2b7a05dde61037c7b4116e8742121eaf2e1df12f160"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01407874"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020894237"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01407874", 
      "https://app.dimensions.ai/details/publication/pub.1020894237"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000488.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01407874"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01407874'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01407874'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01407874'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01407874'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01407874 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N11db93e30e80436ab0a280eb0b7c6ef6
4 schema:citation sg:pub.10.1007/bf01397884
5 sg:pub.10.1007/bf01399316
6 sg:pub.10.1007/bf01589345
7 sg:pub.10.1007/bf01681353
8 sg:pub.10.1007/bf02252133
9 sg:pub.10.1007/bf02260741
10 https://doi.org/10.1016/b978-0-12-468660-1.50007-4
11 https://doi.org/10.1090/s0025-5718-1974-0343581-1
12 https://doi.org/10.1093/comjnl/13.3.317
13 https://doi.org/10.1137/0718067
14 https://doi.org/10.1137/0719025
15 https://doi.org/10.1137/1019005
16 schema:datePublished 1982-10
17 schema:datePublishedReg 1982-10-01
18 schema:description This paper considers local convergence properties of inexact partitioned quasi-Newton algorithms for the solution of certain non-linear equations and, in particular, the optimization of partially separable objective functions. Using the bounded deterioration principle, one obtains local and linear convergence, which impliesQ-superlinear convergence under the usual conditions on the quasi-Newton updates. For the optimization case, these conditions are shown to be satisfied by any sequence of updates within the convex Broyden class, even if some Hessians are singular at the minimizer. Finally, local andQ-superlinear convergence is established for an inexact partitioned variable metric method under mild assumptions on the initial Hessian approximations.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N6055ecdb3b114521953850df043d28a1
23 Nce02727f3d984907a9f1960f48d5789e
24 sg:journal.1136759
25 schema:name Local convergence analysis for partitioned quasi-Newton updates
26 schema:pagination 429-448
27 schema:productId N199d0f3d50034f2cba4bfb0853fa8a2a
28 Nb6953050b66646ea882a207836481faf
29 Nd12a8c8671cd4bd98f8fb83b96c514d8
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020894237
31 https://doi.org/10.1007/bf01407874
32 schema:sdDatePublished 2019-04-10T23:19
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N720e8db498d340f5b4292d79e22e1613
35 schema:url http://link.springer.com/10.1007/BF01407874
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N11db93e30e80436ab0a280eb0b7c6ef6 rdf:first sg:person.0730474155.53
40 rdf:rest N8ccf3d804b0f4ca287df6fb9939c3b64
41 N199d0f3d50034f2cba4bfb0853fa8a2a schema:name readcube_id
42 schema:value 638d9a33210e70e1047fd2b7a05dde61037c7b4116e8742121eaf2e1df12f160
43 rdf:type schema:PropertyValue
44 N6055ecdb3b114521953850df043d28a1 schema:volumeNumber 39
45 rdf:type schema:PublicationVolume
46 N720e8db498d340f5b4292d79e22e1613 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N8ccf3d804b0f4ca287df6fb9939c3b64 rdf:first sg:person.011563043555.63
49 rdf:rest rdf:nil
50 Nb6953050b66646ea882a207836481faf schema:name dimensions_id
51 schema:value pub.1020894237
52 rdf:type schema:PropertyValue
53 Nce02727f3d984907a9f1960f48d5789e schema:issueNumber 3
54 rdf:type schema:PublicationIssue
55 Nd12a8c8671cd4bd98f8fb83b96c514d8 schema:name doi
56 schema:value 10.1007/bf01407874
57 rdf:type schema:PropertyValue
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
62 schema:name Numerical and Computational Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1136759 schema:issn 0029-599X
65 0945-3245
66 schema:name Numerische Mathematik
67 rdf:type schema:Periodical
68 sg:person.011563043555.63 schema:affiliation https://www.grid.ac/institutes/grid.6520.1
69 schema:familyName Toint
70 schema:givenName Ph. L.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011563043555.63
72 rdf:type schema:Person
73 sg:person.0730474155.53 schema:affiliation https://www.grid.ac/institutes/grid.6520.1
74 schema:familyName Griewank
75 schema:givenName A.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730474155.53
77 rdf:type schema:Person
78 sg:pub.10.1007/bf01397884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034387212
79 https://doi.org/10.1007/bf01397884
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf01399316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039339277
82 https://doi.org/10.1007/bf01399316
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf01589345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002995969
85 https://doi.org/10.1007/bf01589345
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf01681353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017545953
88 https://doi.org/10.1007/bf01681353
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf02252133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028853824
91 https://doi.org/10.1007/bf02252133
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf02260741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041946918
94 https://doi.org/10.1007/bf02260741
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/b978-0-12-468660-1.50007-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051041415
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1090/s0025-5718-1974-0343581-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041195304
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1093/comjnl/13.3.317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007597686
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1137/0718067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852783
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1137/0719025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852820
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1137/1019005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062861067
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.6520.1 schema:alternateName University of Namur
109 schema:name Department of Mathematics, Facultes Universitaires de Namur, Namur, Belgium
110 Department of Southern Mathematics Methodist University, Dallas, Texas, USA
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...