A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1974-08

AUTHORS

P. Deuflhard

ABSTRACT

In this paper the well-known modified (underrelaxed, damped) Newton method is extended in such a way as to apply to the solution of ill-conditioned systems of nonlinear equations, i.e. systems having a “nearly singular” Jacobian at some iterate. A special technique also derived herein may be useful, if only bad initial guesses of the solution point are available. Difficulties that arose previously in the numerical solution of nonlinear two-point boundary value problems by multiple shooting techniques can be removed by means of the results presented below. More... »

PAGES

289-315

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01406969

DOI

http://dx.doi.org/10.1007/bf01406969

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001030131


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mathematisches Institut der TU M\u00fcnchen, Barerstr. 23, D-8000, M\u00fcnchen 2, Bundesrepublik Deutschland", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Mathematisches Institut der TU M\u00fcnchen, Barerstr. 23, D-8000, M\u00fcnchen 2, Bundesrepublik Deutschland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deuflhard", 
        "givenName": "P.", 
        "id": "sg:person.0631627001.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631627001.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01436084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015352472", 
          "https://doi.org/10.1007/bf01436084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01385880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034381386", 
          "https://doi.org/10.1007/bf01385880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01386306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030433122", 
          "https://doi.org/10.1007/bf01386306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-06865-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043368623", 
          "https://doi.org/10.1007/978-3-662-06865-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-06867-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008768419", 
          "https://doi.org/10.1007/978-3-662-06867-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02163027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049192175", 
          "https://doi.org/10.1007/bf02163027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01404679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020377526", 
          "https://doi.org/10.1007/bf01404679"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1974-08", 
    "datePublishedReg": "1974-08-01", 
    "description": "In this paper the well-known modified (underrelaxed, damped) Newton method is extended in such a way as to apply to the solution of ill-conditioned systems of nonlinear equations, i.e. systems having a \u201cnearly singular\u201d Jacobian at some iterate. A special technique also derived herein may be useful, if only bad initial guesses of the solution point are available. Difficulties that arose previously in the numerical solution of nonlinear two-point boundary value problems by multiple shooting techniques can be removed by means of the results presented below.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01406969", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136759", 
        "issn": [
          "0029-599X", 
          "0945-3245"
        ], 
        "name": "Numerische Mathematik", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "modified Newton method", 
      "nonlinear equations", 
      "Newton method", 
      "two-point boundary value problem", 
      "multiple shooting technique", 
      "boundary value problem", 
      "multiple shooting", 
      "value problem", 
      "shooting technique", 
      "bad initial guesses", 
      "numerical solution", 
      "initial guess", 
      "solution point", 
      "equations", 
      "solution", 
      "iterates", 
      "special techniques", 
      "Jacobian", 
      "guess", 
      "system", 
      "problem", 
      "technique", 
      "point", 
      "applications", 
      "means", 
      "shooting", 
      "results", 
      "way", 
      "difficulties", 
      "method", 
      "paper"
    ], 
    "name": "A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting", 
    "pagination": "289-315", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001030131"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01406969"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01406969", 
      "https://app.dimensions.ai/details/publication/pub.1001030131"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_129.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01406969"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01406969'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01406969'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01406969'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01406969'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      21 PREDICATES      63 URIs      48 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01406969 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N97ced2112d774b249180a9e3989cd1a2
4 schema:citation sg:pub.10.1007/978-3-662-06865-6
5 sg:pub.10.1007/978-3-662-06867-0
6 sg:pub.10.1007/bf01385880
7 sg:pub.10.1007/bf01386306
8 sg:pub.10.1007/bf01404679
9 sg:pub.10.1007/bf01436084
10 sg:pub.10.1007/bf02163027
11 schema:datePublished 1974-08
12 schema:datePublishedReg 1974-08-01
13 schema:description In this paper the well-known modified (underrelaxed, damped) Newton method is extended in such a way as to apply to the solution of ill-conditioned systems of nonlinear equations, i.e. systems having a “nearly singular” Jacobian at some iterate. A special technique also derived herein may be useful, if only bad initial guesses of the solution point are available. Difficulties that arose previously in the numerical solution of nonlinear two-point boundary value problems by multiple shooting techniques can be removed by means of the results presented below.
14 schema:genre article
15 schema:isAccessibleForFree false
16 schema:isPartOf N613bea7df05645e4bf6ee6ac6cb99dba
17 Ncc17ee07934f4cd69d1c425a13cbbbc3
18 sg:journal.1136759
19 schema:keywords Jacobian
20 Newton method
21 applications
22 bad initial guesses
23 boundary value problem
24 difficulties
25 equations
26 guess
27 initial guess
28 iterates
29 means
30 method
31 modified Newton method
32 multiple shooting
33 multiple shooting technique
34 nonlinear equations
35 numerical solution
36 paper
37 point
38 problem
39 results
40 shooting
41 shooting technique
42 solution
43 solution point
44 special techniques
45 system
46 technique
47 two-point boundary value problem
48 value problem
49 way
50 schema:name A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting
51 schema:pagination 289-315
52 schema:productId N79b9e598ed904a9ba3e0d67ba8da5c9d
53 Nbe33e26d5867448488526b71af1d023b
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001030131
55 https://doi.org/10.1007/bf01406969
56 schema:sdDatePublished 2022-08-04T16:49
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Ne19c99d73a0e4e7581e47386f881b982
59 schema:url https://doi.org/10.1007/bf01406969
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N613bea7df05645e4bf6ee6ac6cb99dba schema:issueNumber 4
64 rdf:type schema:PublicationIssue
65 N79b9e598ed904a9ba3e0d67ba8da5c9d schema:name dimensions_id
66 schema:value pub.1001030131
67 rdf:type schema:PropertyValue
68 N97ced2112d774b249180a9e3989cd1a2 rdf:first sg:person.0631627001.13
69 rdf:rest rdf:nil
70 Nbe33e26d5867448488526b71af1d023b schema:name doi
71 schema:value 10.1007/bf01406969
72 rdf:type schema:PropertyValue
73 Ncc17ee07934f4cd69d1c425a13cbbbc3 schema:volumeNumber 22
74 rdf:type schema:PublicationVolume
75 Ne19c99d73a0e4e7581e47386f881b982 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
81 schema:name Numerical and Computational Mathematics
82 rdf:type schema:DefinedTerm
83 sg:journal.1136759 schema:issn 0029-599X
84 0945-3245
85 schema:name Numerische Mathematik
86 schema:publisher Springer Nature
87 rdf:type schema:Periodical
88 sg:person.0631627001.13 schema:affiliation grid-institutes:grid.6936.a
89 schema:familyName Deuflhard
90 schema:givenName P.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631627001.13
92 rdf:type schema:Person
93 sg:pub.10.1007/978-3-662-06865-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043368623
94 https://doi.org/10.1007/978-3-662-06865-6
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/978-3-662-06867-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008768419
97 https://doi.org/10.1007/978-3-662-06867-0
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf01385880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034381386
100 https://doi.org/10.1007/bf01385880
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf01386306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030433122
103 https://doi.org/10.1007/bf01386306
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf01404679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020377526
106 https://doi.org/10.1007/bf01404679
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf01436084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015352472
109 https://doi.org/10.1007/bf01436084
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf02163027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049192175
112 https://doi.org/10.1007/bf02163027
113 rdf:type schema:CreativeWork
114 grid-institutes:grid.6936.a schema:alternateName Mathematisches Institut der TU München, Barerstr. 23, D-8000, München 2, Bundesrepublik Deutschland
115 schema:name Mathematisches Institut der TU München, Barerstr. 23, D-8000, München 2, Bundesrepublik Deutschland
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...