Field theory description of continuous phase transitions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1973-01

AUTHORS

Daniel J. Amit, Marco Zannetti

ABSTRACT

We present a formalism of a scalar, classical, and time-independent field theory of the type proposed by Ferrell for the treatment of continuous phase transitions. The formalism is developed along lines similar to those of many-body theory. All physical quantities, e.g., susceptibility, correlation length, and free energy, are expressed as functionals of the two-point time-independent correlation function and the order parameter. This is done both in the ordered and in the disordered phase. We obtain renormalized equations and diagram expansions of all quantities and self-consistent approximation schemes arc presented. It is shown that near the transition temperature, which is defined within the theory, no weak coupling limit exists. The generalization to more complicated field symmetries is straight-forward. More... »

PAGES

31-63

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01406131

DOI

http://dx.doi.org/10.1007/bf01406131

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045251107


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, Israel", 
          "id": "http://www.grid.ac/institutes/grid.9619.7", 
          "name": [
            "Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amit", 
        "givenName": "Daniel J.", 
        "id": "sg:person.0615137425.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615137425.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Brandeis University, Waltham, Massachusetts", 
          "id": "http://www.grid.ac/institutes/grid.253264.4", 
          "name": [
            "Department of Physics, Brandeis University, Waltham, Massachusetts"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zannetti", 
        "givenName": "Marco", 
        "id": "sg:person.0763640651.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763640651.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01420950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041629458", 
          "https://doi.org/10.1007/bf01420950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02083659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010695261", 
          "https://doi.org/10.1007/bf02083659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02750573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029207593", 
          "https://doi.org/10.1007/bf02750573"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1973-01", 
    "datePublishedReg": "1973-01-01", 
    "description": "We present a formalism of a scalar, classical, and time-independent field theory of the type proposed by Ferrell for the treatment of continuous phase transitions. The formalism is developed along lines similar to those of many-body theory. All physical quantities, e.g., susceptibility, correlation length, and free energy, are expressed as functionals of the two-point time-independent correlation function and the order parameter. This is done both in the ordered and in the disordered phase. We obtain renormalized equations and diagram expansions of all quantities and self-consistent approximation schemes arc presented. It is shown that near the transition temperature, which is defined within the theory, no weak coupling limit exists. The generalization to more complicated field symmetries is straight-forward.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01406131", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "continuous phase transition", 
      "time-independent correlation function", 
      "field theory description", 
      "weak coupling limit", 
      "phase transition", 
      "renormalized equations", 
      "field theory", 
      "theory description", 
      "diagram expansion", 
      "order parameter", 
      "physical quantities", 
      "correlation functions", 
      "correlation length", 
      "coupling limit", 
      "body theory", 
      "field symmetry", 
      "formalism", 
      "theory", 
      "free energy", 
      "equations", 
      "transition temperature", 
      "functionals", 
      "symmetry", 
      "generalization", 
      "transition", 
      "quantity", 
      "Ferrell", 
      "parameters", 
      "description", 
      "limit", 
      "expansion", 
      "function", 
      "energy", 
      "arc", 
      "temperature", 
      "length", 
      "phase", 
      "lines", 
      "types", 
      "susceptibility", 
      "treatment"
    ], 
    "name": "Field theory description of continuous phase transitions", 
    "pagination": "31-63", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045251107"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01406131"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01406131", 
      "https://app.dimensions.ai/details/publication/pub.1045251107"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_108.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01406131"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01406131'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01406131'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01406131'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01406131'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      22 PREDICATES      70 URIs      59 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01406131 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N635ab53328e3463fbaece12b65a8eaff
4 schema:citation sg:pub.10.1007/bf01420950
5 sg:pub.10.1007/bf02083659
6 sg:pub.10.1007/bf02750573
7 schema:datePublished 1973-01
8 schema:datePublishedReg 1973-01-01
9 schema:description We present a formalism of a scalar, classical, and time-independent field theory of the type proposed by Ferrell for the treatment of continuous phase transitions. The formalism is developed along lines similar to those of many-body theory. All physical quantities, e.g., susceptibility, correlation length, and free energy, are expressed as functionals of the two-point time-independent correlation function and the order parameter. This is done both in the ordered and in the disordered phase. We obtain renormalized equations and diagram expansions of all quantities and self-consistent approximation schemes arc presented. It is shown that near the transition temperature, which is defined within the theory, no weak coupling limit exists. The generalization to more complicated field symmetries is straight-forward.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N556f62d81bb14db5a15f6c6fa2fea66a
14 Nf37ee12602bf4b0baffa84d4ff6cd805
15 sg:journal.1040979
16 schema:keywords Ferrell
17 arc
18 body theory
19 continuous phase transition
20 correlation functions
21 correlation length
22 coupling limit
23 description
24 diagram expansion
25 energy
26 equations
27 expansion
28 field symmetry
29 field theory
30 field theory description
31 formalism
32 free energy
33 function
34 functionals
35 generalization
36 length
37 limit
38 lines
39 order parameter
40 parameters
41 phase
42 phase transition
43 physical quantities
44 quantity
45 renormalized equations
46 susceptibility
47 symmetry
48 temperature
49 theory
50 theory description
51 time-independent correlation function
52 transition
53 transition temperature
54 treatment
55 types
56 weak coupling limit
57 schema:name Field theory description of continuous phase transitions
58 schema:pagination 31-63
59 schema:productId Na16079a5f0124f0e8fb9a7cf75163882
60 Nb1fc4482bb4e4ad1a8950143b32d65b0
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045251107
62 https://doi.org/10.1007/bf01406131
63 schema:sdDatePublished 2022-05-10T09:38
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N52b2299f6c384a6593a019a2edcccf93
66 schema:url https://doi.org/10.1007/bf01406131
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N32c9c4983a914ed88c2c0d8d2bdbffbd rdf:first sg:person.0763640651.14
71 rdf:rest rdf:nil
72 N52b2299f6c384a6593a019a2edcccf93 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N556f62d81bb14db5a15f6c6fa2fea66a schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 N635ab53328e3463fbaece12b65a8eaff rdf:first sg:person.0615137425.75
77 rdf:rest N32c9c4983a914ed88c2c0d8d2bdbffbd
78 Na16079a5f0124f0e8fb9a7cf75163882 schema:name doi
79 schema:value 10.1007/bf01406131
80 rdf:type schema:PropertyValue
81 Nb1fc4482bb4e4ad1a8950143b32d65b0 schema:name dimensions_id
82 schema:value pub.1045251107
83 rdf:type schema:PropertyValue
84 Nf37ee12602bf4b0baffa84d4ff6cd805 schema:volumeNumber 7
85 rdf:type schema:PublicationVolume
86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
87 schema:name Mathematical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
90 schema:name Pure Mathematics
91 rdf:type schema:DefinedTerm
92 sg:journal.1040979 schema:issn 0022-4715
93 1572-9613
94 schema:name Journal of Statistical Physics
95 schema:publisher Springer Nature
96 rdf:type schema:Periodical
97 sg:person.0615137425.75 schema:affiliation grid-institutes:grid.9619.7
98 schema:familyName Amit
99 schema:givenName Daniel J.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615137425.75
101 rdf:type schema:Person
102 sg:person.0763640651.14 schema:affiliation grid-institutes:grid.253264.4
103 schema:familyName Zannetti
104 schema:givenName Marco
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763640651.14
106 rdf:type schema:Person
107 sg:pub.10.1007/bf01420950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041629458
108 https://doi.org/10.1007/bf01420950
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf02083659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010695261
111 https://doi.org/10.1007/bf02083659
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf02750573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029207593
114 https://doi.org/10.1007/bf02750573
115 rdf:type schema:CreativeWork
116 grid-institutes:grid.253264.4 schema:alternateName Department of Physics, Brandeis University, Waltham, Massachusetts
117 schema:name Department of Physics, Brandeis University, Waltham, Massachusetts
118 rdf:type schema:Organization
119 grid-institutes:grid.9619.7 schema:alternateName Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, Israel
120 schema:name Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, Israel
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...