Ontology type: schema:ScholarlyArticle
1973-01
AUTHORSDaniel J. Amit, Marco Zannetti
ABSTRACTWe present a formalism of a scalar, classical, and time-independent field theory of the type proposed by Ferrell for the treatment of continuous phase transitions. The formalism is developed along lines similar to those of many-body theory. All physical quantities, e.g., susceptibility, correlation length, and free energy, are expressed as functionals of the two-point time-independent correlation function and the order parameter. This is done both in the ordered and in the disordered phase. We obtain renormalized equations and diagram expansions of all quantities and self-consistent approximation schemes arc presented. It is shown that near the transition temperature, which is defined within the theory, no weak coupling limit exists. The generalization to more complicated field symmetries is straight-forward. More... »
PAGES31-63
http://scigraph.springernature.com/pub.10.1007/bf01406131
DOIhttp://dx.doi.org/10.1007/bf01406131
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1045251107
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, Israel",
"id": "http://www.grid.ac/institutes/grid.9619.7",
"name": [
"Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, Israel"
],
"type": "Organization"
},
"familyName": "Amit",
"givenName": "Daniel J.",
"id": "sg:person.0615137425.75",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615137425.75"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics, Brandeis University, Waltham, Massachusetts",
"id": "http://www.grid.ac/institutes/grid.253264.4",
"name": [
"Department of Physics, Brandeis University, Waltham, Massachusetts"
],
"type": "Organization"
},
"familyName": "Zannetti",
"givenName": "Marco",
"id": "sg:person.0763640651.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763640651.14"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01420950",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041629458",
"https://doi.org/10.1007/bf01420950"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02083659",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010695261",
"https://doi.org/10.1007/bf02083659"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02750573",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029207593",
"https://doi.org/10.1007/bf02750573"
],
"type": "CreativeWork"
}
],
"datePublished": "1973-01",
"datePublishedReg": "1973-01-01",
"description": "We present a formalism of a scalar, classical, and time-independent field theory of the type proposed by Ferrell for the treatment of continuous phase transitions. The formalism is developed along lines similar to those of many-body theory. All physical quantities, e.g., susceptibility, correlation length, and free energy, are expressed as functionals of the two-point time-independent correlation function and the order parameter. This is done both in the ordered and in the disordered phase. We obtain renormalized equations and diagram expansions of all quantities and self-consistent approximation schemes arc presented. It is shown that near the transition temperature, which is defined within the theory, no weak coupling limit exists. The generalization to more complicated field symmetries is straight-forward.",
"genre": "article",
"id": "sg:pub.10.1007/bf01406131",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1040979",
"issn": [
"0022-4715",
"1572-9613"
],
"name": "Journal of Statistical Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "7"
}
],
"keywords": [
"continuous phase transition",
"time-independent correlation function",
"field theory description",
"weak coupling limit",
"phase transition",
"renormalized equations",
"field theory",
"theory description",
"diagram expansion",
"order parameter",
"physical quantities",
"correlation functions",
"correlation length",
"coupling limit",
"body theory",
"field symmetry",
"formalism",
"theory",
"free energy",
"equations",
"transition temperature",
"functionals",
"symmetry",
"generalization",
"transition",
"quantity",
"Ferrell",
"parameters",
"description",
"limit",
"expansion",
"function",
"energy",
"arc",
"temperature",
"length",
"phase",
"lines",
"types",
"susceptibility",
"treatment"
],
"name": "Field theory description of continuous phase transitions",
"pagination": "31-63",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1045251107"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf01406131"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf01406131",
"https://app.dimensions.ai/details/publication/pub.1045251107"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:38",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_108.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf01406131"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01406131'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01406131'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01406131'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01406131'
This table displays all metadata directly associated to this object as RDF triples.
121 TRIPLES
22 PREDICATES
70 URIs
59 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf01406131 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | N635ab53328e3463fbaece12b65a8eaff |
4 | ″ | schema:citation | sg:pub.10.1007/bf01420950 |
5 | ″ | ″ | sg:pub.10.1007/bf02083659 |
6 | ″ | ″ | sg:pub.10.1007/bf02750573 |
7 | ″ | schema:datePublished | 1973-01 |
8 | ″ | schema:datePublishedReg | 1973-01-01 |
9 | ″ | schema:description | We present a formalism of a scalar, classical, and time-independent field theory of the type proposed by Ferrell for the treatment of continuous phase transitions. The formalism is developed along lines similar to those of many-body theory. All physical quantities, e.g., susceptibility, correlation length, and free energy, are expressed as functionals of the two-point time-independent correlation function and the order parameter. This is done both in the ordered and in the disordered phase. We obtain renormalized equations and diagram expansions of all quantities and self-consistent approximation schemes arc presented. It is shown that near the transition temperature, which is defined within the theory, no weak coupling limit exists. The generalization to more complicated field symmetries is straight-forward. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N556f62d81bb14db5a15f6c6fa2fea66a |
14 | ″ | ″ | Nf37ee12602bf4b0baffa84d4ff6cd805 |
15 | ″ | ″ | sg:journal.1040979 |
16 | ″ | schema:keywords | Ferrell |
17 | ″ | ″ | arc |
18 | ″ | ″ | body theory |
19 | ″ | ″ | continuous phase transition |
20 | ″ | ″ | correlation functions |
21 | ″ | ″ | correlation length |
22 | ″ | ″ | coupling limit |
23 | ″ | ″ | description |
24 | ″ | ″ | diagram expansion |
25 | ″ | ″ | energy |
26 | ″ | ″ | equations |
27 | ″ | ″ | expansion |
28 | ″ | ″ | field symmetry |
29 | ″ | ″ | field theory |
30 | ″ | ″ | field theory description |
31 | ″ | ″ | formalism |
32 | ″ | ″ | free energy |
33 | ″ | ″ | function |
34 | ″ | ″ | functionals |
35 | ″ | ″ | generalization |
36 | ″ | ″ | length |
37 | ″ | ″ | limit |
38 | ″ | ″ | lines |
39 | ″ | ″ | order parameter |
40 | ″ | ″ | parameters |
41 | ″ | ″ | phase |
42 | ″ | ″ | phase transition |
43 | ″ | ″ | physical quantities |
44 | ″ | ″ | quantity |
45 | ″ | ″ | renormalized equations |
46 | ″ | ″ | susceptibility |
47 | ″ | ″ | symmetry |
48 | ″ | ″ | temperature |
49 | ″ | ″ | theory |
50 | ″ | ″ | theory description |
51 | ″ | ″ | time-independent correlation function |
52 | ″ | ″ | transition |
53 | ″ | ″ | transition temperature |
54 | ″ | ″ | treatment |
55 | ″ | ″ | types |
56 | ″ | ″ | weak coupling limit |
57 | ″ | schema:name | Field theory description of continuous phase transitions |
58 | ″ | schema:pagination | 31-63 |
59 | ″ | schema:productId | Na16079a5f0124f0e8fb9a7cf75163882 |
60 | ″ | ″ | Nb1fc4482bb4e4ad1a8950143b32d65b0 |
61 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1045251107 |
62 | ″ | ″ | https://doi.org/10.1007/bf01406131 |
63 | ″ | schema:sdDatePublished | 2022-05-10T09:38 |
64 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
65 | ″ | schema:sdPublisher | N52b2299f6c384a6593a019a2edcccf93 |
66 | ″ | schema:url | https://doi.org/10.1007/bf01406131 |
67 | ″ | sgo:license | sg:explorer/license/ |
68 | ″ | sgo:sdDataset | articles |
69 | ″ | rdf:type | schema:ScholarlyArticle |
70 | N32c9c4983a914ed88c2c0d8d2bdbffbd | rdf:first | sg:person.0763640651.14 |
71 | ″ | rdf:rest | rdf:nil |
72 | N52b2299f6c384a6593a019a2edcccf93 | schema:name | Springer Nature - SN SciGraph project |
73 | ″ | rdf:type | schema:Organization |
74 | N556f62d81bb14db5a15f6c6fa2fea66a | schema:issueNumber | 1 |
75 | ″ | rdf:type | schema:PublicationIssue |
76 | N635ab53328e3463fbaece12b65a8eaff | rdf:first | sg:person.0615137425.75 |
77 | ″ | rdf:rest | N32c9c4983a914ed88c2c0d8d2bdbffbd |
78 | Na16079a5f0124f0e8fb9a7cf75163882 | schema:name | doi |
79 | ″ | schema:value | 10.1007/bf01406131 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | Nb1fc4482bb4e4ad1a8950143b32d65b0 | schema:name | dimensions_id |
82 | ″ | schema:value | pub.1045251107 |
83 | ″ | rdf:type | schema:PropertyValue |
84 | Nf37ee12602bf4b0baffa84d4ff6cd805 | schema:volumeNumber | 7 |
85 | ″ | rdf:type | schema:PublicationVolume |
86 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
87 | ″ | schema:name | Mathematical Sciences |
88 | ″ | rdf:type | schema:DefinedTerm |
89 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
90 | ″ | schema:name | Pure Mathematics |
91 | ″ | rdf:type | schema:DefinedTerm |
92 | sg:journal.1040979 | schema:issn | 0022-4715 |
93 | ″ | ″ | 1572-9613 |
94 | ″ | schema:name | Journal of Statistical Physics |
95 | ″ | schema:publisher | Springer Nature |
96 | ″ | rdf:type | schema:Periodical |
97 | sg:person.0615137425.75 | schema:affiliation | grid-institutes:grid.9619.7 |
98 | ″ | schema:familyName | Amit |
99 | ″ | schema:givenName | Daniel J. |
100 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615137425.75 |
101 | ″ | rdf:type | schema:Person |
102 | sg:person.0763640651.14 | schema:affiliation | grid-institutes:grid.253264.4 |
103 | ″ | schema:familyName | Zannetti |
104 | ″ | schema:givenName | Marco |
105 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763640651.14 |
106 | ″ | rdf:type | schema:Person |
107 | sg:pub.10.1007/bf01420950 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041629458 |
108 | ″ | ″ | https://doi.org/10.1007/bf01420950 |
109 | ″ | rdf:type | schema:CreativeWork |
110 | sg:pub.10.1007/bf02083659 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1010695261 |
111 | ″ | ″ | https://doi.org/10.1007/bf02083659 |
112 | ″ | rdf:type | schema:CreativeWork |
113 | sg:pub.10.1007/bf02750573 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1029207593 |
114 | ″ | ″ | https://doi.org/10.1007/bf02750573 |
115 | ″ | rdf:type | schema:CreativeWork |
116 | grid-institutes:grid.253264.4 | schema:alternateName | Department of Physics, Brandeis University, Waltham, Massachusetts |
117 | ″ | schema:name | Department of Physics, Brandeis University, Waltham, Massachusetts |
118 | ″ | rdf:type | schema:Organization |
119 | grid-institutes:grid.9619.7 | schema:alternateName | Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, Israel |
120 | ″ | schema:name | Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, Israel |
121 | ″ | rdf:type | schema:Organization |