Ontology type: schema:ScholarlyArticle
1978-12
AUTHORS ABSTRACTIn this paper we describe how to use Gram-Schmidt factorizations of Daniel et al. [1] to realize the method of [8] for solving linearly constrained linear least squares problems. The main advantage of using these factorizations is that it is relatively easy to take data changes into account, if necessary.The algorithm is compared numerically with two other codes, one of them published by Lawson and Hanson [3]. Further computational tests show the efficiency of the proposed methods, if a few data of the original problem are changed subsequently. More... »
PAGES431-463
http://scigraph.springernature.com/pub.10.1007/bf01404569
DOIhttp://dx.doi.org/10.1007/bf01404569
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1030999225
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institut f\u00fcr Angewandte Mathematik und Statistik, Universit\u00e4t W\u00fcrzburg, Am Hubland, D-8700, W\u00fcrzburg, Germany (Fed. Rep.)",
"id": "http://www.grid.ac/institutes/grid.8379.5",
"name": [
"Institut f\u00fcr Angewandte Mathematik und Statistik, Universit\u00e4t W\u00fcrzburg, Am Hubland, D-8700, W\u00fcrzburg, Germany (Fed. Rep.)"
],
"type": "Organization"
},
"familyName": "Schittkowski",
"givenName": "K.",
"id": "sg:person.011052705435.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011052705435.02"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut f\u00fcr Angewandte Mathematik und Statistik, Universit\u00e4t W\u00fcrzburg, Am Hubland, D-8700, W\u00fcrzburg, Germany (Fed. Rep.)",
"id": "http://www.grid.ac/institutes/grid.8379.5",
"name": [
"Institut f\u00fcr Angewandte Mathematik und Statistik, Universit\u00e4t W\u00fcrzburg, Am Hubland, D-8700, W\u00fcrzburg, Germany (Fed. Rep.)"
],
"type": "Organization"
},
"familyName": "Stoer",
"givenName": "J.",
"id": "sg:person.011465456275.61",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011465456275.61"
],
"type": "Person"
}
],
"datePublished": "1978-12",
"datePublishedReg": "1978-12-01",
"description": "In this paper we describe how to use Gram-Schmidt factorizations of Daniel et al. [1] to realize the method of [8] for solving linearly constrained linear least squares problems. The main advantage of using these factorizations is that it is relatively easy to take data changes into account, if necessary.The algorithm is compared numerically with two other codes, one of them published by Lawson and Hanson [3]. Further computational tests show the efficiency of the proposed methods, if a few data of the original problem are changed subsequently.",
"genre": "article",
"id": "sg:pub.10.1007/bf01404569",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136759",
"issn": [
"0029-599X",
"0945-3245"
],
"name": "Numerische Mathematik",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "31"
}
],
"keywords": [
"linear least squares problem",
"least squares problem",
"squares problem",
"Gram\u2013Schmidt factorization",
"original problem",
"computational tests",
"factorization method",
"factorization",
"main advantage",
"problem",
"data changes",
"et al",
"algorithm",
"solution",
"code",
"account",
"Lawson",
"al",
"advantages",
"efficiency",
"Hanson",
"data",
"Daniels et al",
"changes",
"test",
"method",
"paper"
],
"name": "A factorization method for the solution of constrained linear least squares problems allowing subsequent data changes",
"pagination": "431-463",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1030999225"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf01404569"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf01404569",
"https://app.dimensions.ai/details/publication/pub.1030999225"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T21:57",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_144.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf01404569"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01404569'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01404569'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01404569'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01404569'
This table displays all metadata directly associated to this object as RDF triples.
92 TRIPLES
21 PREDICATES
53 URIs
45 LITERALS
6 BLANK NODES