A factorization method for the solution of constrained linear least squares problems allowing subsequent data changes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1978-12

AUTHORS

K. Schittkowski, J. Stoer

ABSTRACT

In this paper we describe how to use Gram-Schmidt factorizations of Daniel et al. [1] to realize the method of [8] for solving linearly constrained linear least squares problems. The main advantage of using these factorizations is that it is relatively easy to take data changes into account, if necessary.The algorithm is compared numerically with two other codes, one of them published by Lawson and Hanson [3]. Further computational tests show the efficiency of the proposed methods, if a few data of the original problem are changed subsequently. More... »

PAGES

431-463

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01404569

DOI

http://dx.doi.org/10.1007/bf01404569

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030999225


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Angewandte Mathematik und Statistik, Universit\u00e4t W\u00fcrzburg, Am Hubland, D-8700, W\u00fcrzburg, Germany (Fed. Rep.)", 
          "id": "http://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Institut f\u00fcr Angewandte Mathematik und Statistik, Universit\u00e4t W\u00fcrzburg, Am Hubland, D-8700, W\u00fcrzburg, Germany (Fed. Rep.)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schittkowski", 
        "givenName": "K.", 
        "id": "sg:person.011052705435.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011052705435.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Angewandte Mathematik und Statistik, Universit\u00e4t W\u00fcrzburg, Am Hubland, D-8700, W\u00fcrzburg, Germany (Fed. Rep.)", 
          "id": "http://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Institut f\u00fcr Angewandte Mathematik und Statistik, Universit\u00e4t W\u00fcrzburg, Am Hubland, D-8700, W\u00fcrzburg, Germany (Fed. Rep.)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stoer", 
        "givenName": "J.", 
        "id": "sg:person.011465456275.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011465456275.61"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1978-12", 
    "datePublishedReg": "1978-12-01", 
    "description": "In this paper we describe how to use Gram-Schmidt factorizations of Daniel et al. [1] to realize the method of [8] for solving linearly constrained linear least squares problems. The main advantage of using these factorizations is that it is relatively easy to take data changes into account, if necessary.The algorithm is compared numerically with two other codes, one of them published by Lawson and Hanson [3]. Further computational tests show the efficiency of the proposed methods, if a few data of the original problem are changed subsequently.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01404569", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136759", 
        "issn": [
          "0029-599X", 
          "0945-3245"
        ], 
        "name": "Numerische Mathematik", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "keywords": [
      "linear least squares problem", 
      "least squares problem", 
      "squares problem", 
      "Gram\u2013Schmidt factorization", 
      "original problem", 
      "computational tests", 
      "factorization method", 
      "factorization", 
      "main advantage", 
      "problem", 
      "data changes", 
      "et al", 
      "algorithm", 
      "solution", 
      "code", 
      "account", 
      "Lawson", 
      "al", 
      "advantages", 
      "efficiency", 
      "Hanson", 
      "data", 
      "Daniels et al", 
      "changes", 
      "test", 
      "method", 
      "paper"
    ], 
    "name": "A factorization method for the solution of constrained linear least squares problems allowing subsequent data changes", 
    "pagination": "431-463", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030999225"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01404569"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01404569", 
      "https://app.dimensions.ai/details/publication/pub.1030999225"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T21:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_144.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01404569"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01404569'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01404569'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01404569'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01404569'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      21 PREDICATES      53 URIs      45 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01404569 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N2a6202efda1245cbb1707ba1c5f36ec7
4 schema:datePublished 1978-12
5 schema:datePublishedReg 1978-12-01
6 schema:description In this paper we describe how to use Gram-Schmidt factorizations of Daniel et al. [1] to realize the method of [8] for solving linearly constrained linear least squares problems. The main advantage of using these factorizations is that it is relatively easy to take data changes into account, if necessary.The algorithm is compared numerically with two other codes, one of them published by Lawson and Hanson [3]. Further computational tests show the efficiency of the proposed methods, if a few data of the original problem are changed subsequently.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N3ae29c59a03c4ef4a46812de49fb941c
11 Ncd09324cf6364e828c47aee5aa7b666f
12 sg:journal.1136759
13 schema:keywords Daniels et al
14 Gram–Schmidt factorization
15 Hanson
16 Lawson
17 account
18 advantages
19 al
20 algorithm
21 changes
22 code
23 computational tests
24 data
25 data changes
26 efficiency
27 et al
28 factorization
29 factorization method
30 least squares problem
31 linear least squares problem
32 main advantage
33 method
34 original problem
35 paper
36 problem
37 solution
38 squares problem
39 test
40 schema:name A factorization method for the solution of constrained linear least squares problems allowing subsequent data changes
41 schema:pagination 431-463
42 schema:productId N750a81281ed3490caf75db14b0562936
43 Ne9a59e2d1555433a8f0e71805b00cfe2
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030999225
45 https://doi.org/10.1007/bf01404569
46 schema:sdDatePublished 2022-06-01T21:57
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nfa3719f3fc5e4e3387f697d4136781c5
49 schema:url https://doi.org/10.1007/bf01404569
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N2a6202efda1245cbb1707ba1c5f36ec7 rdf:first sg:person.011052705435.02
54 rdf:rest N938c20f954d846aaa9f612b0d3f6ab54
55 N3ae29c59a03c4ef4a46812de49fb941c schema:volumeNumber 31
56 rdf:type schema:PublicationVolume
57 N750a81281ed3490caf75db14b0562936 schema:name dimensions_id
58 schema:value pub.1030999225
59 rdf:type schema:PropertyValue
60 N938c20f954d846aaa9f612b0d3f6ab54 rdf:first sg:person.011465456275.61
61 rdf:rest rdf:nil
62 Ncd09324cf6364e828c47aee5aa7b666f schema:issueNumber 4
63 rdf:type schema:PublicationIssue
64 Ne9a59e2d1555433a8f0e71805b00cfe2 schema:name doi
65 schema:value 10.1007/bf01404569
66 rdf:type schema:PropertyValue
67 Nfa3719f3fc5e4e3387f697d4136781c5 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
73 schema:name Numerical and Computational Mathematics
74 rdf:type schema:DefinedTerm
75 sg:journal.1136759 schema:issn 0029-599X
76 0945-3245
77 schema:name Numerische Mathematik
78 schema:publisher Springer Nature
79 rdf:type schema:Periodical
80 sg:person.011052705435.02 schema:affiliation grid-institutes:grid.8379.5
81 schema:familyName Schittkowski
82 schema:givenName K.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011052705435.02
84 rdf:type schema:Person
85 sg:person.011465456275.61 schema:affiliation grid-institutes:grid.8379.5
86 schema:familyName Stoer
87 schema:givenName J.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011465456275.61
89 rdf:type schema:Person
90 grid-institutes:grid.8379.5 schema:alternateName Institut für Angewandte Mathematik und Statistik, Universität Würzburg, Am Hubland, D-8700, Würzburg, Germany (Fed. Rep.)
91 schema:name Institut für Angewandte Mathematik und Statistik, Universität Würzburg, Am Hubland, D-8700, Würzburg, Germany (Fed. Rep.)
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...