A factorization method for the solution of constrained linear least squares problems allowing subsequent data changes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1978-12

AUTHORS

K. Schittkowski, J. Stoer

ABSTRACT

In this paper we describe how to use Gram-Schmidt factorizations of Daniel et al. [1] to realize the method of [8] for solving linearly constrained linear least squares problems. The main advantage of using these factorizations is that it is relatively easy to take data changes into account, if necessary. The algorithm is compared numerically with two other codes, one of them published by Lawson and Hanson [3]. Further computational tests show the efficiency of the proposed methods, if a few data of the original problem are changed subsequently. More... »

PAGES

431-463

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01404569

DOI

http://dx.doi.org/10.1007/bf01404569

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030999225


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of W\u00fcrzburg", 
          "id": "https://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Institut f\u00fcr Angewandte Mathematik und Statistik, Universit\u00e4t W\u00fcrzburg, Am Hubland, D-8700, W\u00fcrzburg, Germany (Fed. Rep.)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schittkowski", 
        "givenName": "K.", 
        "id": "sg:person.011052705435.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011052705435.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of W\u00fcrzburg", 
          "id": "https://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Institut f\u00fcr Angewandte Mathematik und Statistik, Universit\u00e4t W\u00fcrzburg, Am Hubland, D-8700, W\u00fcrzburg, Germany (Fed. Rep.)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stoer", 
        "givenName": "J.", 
        "id": "sg:person.011465456275.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011465456275.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0025-5718-1976-0431641-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016810497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0708038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062851970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2005398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069692793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6028/jres.073b.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073599555"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1978-12", 
    "datePublishedReg": "1978-12-01", 
    "description": "In this paper we describe how to use Gram-Schmidt factorizations of Daniel et al. [1] to realize the method of [8] for solving linearly constrained linear least squares problems. The main advantage of using these factorizations is that it is relatively easy to take data changes into account, if necessary. The algorithm is compared numerically with two other codes, one of them published by Lawson and Hanson [3]. Further computational tests show the efficiency of the proposed methods, if a few data of the original problem are changed subsequently.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01404569", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136759", 
        "issn": [
          "0029-599X", 
          "0945-3245"
        ], 
        "name": "Numerische Mathematik", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "A factorization method for the solution of constrained linear least squares problems allowing subsequent data changes", 
    "pagination": "431-463", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "93ae136b4b83b8a684ea785a1c1bc8381a8aff493ee9e2f322192468d7bd9792"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01404569"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030999225"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01404569", 
      "https://app.dimensions.ai/details/publication/pub.1030999225"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46777_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01404569"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01404569'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01404569'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01404569'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01404569'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01404569 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb973c83dfe8947f1a730cc40d4bbfee9
4 schema:citation https://doi.org/10.1090/s0025-5718-1976-0431641-8
5 https://doi.org/10.1137/0708038
6 https://doi.org/10.2307/2005398
7 https://doi.org/10.6028/jres.073b.009
8 schema:datePublished 1978-12
9 schema:datePublishedReg 1978-12-01
10 schema:description In this paper we describe how to use Gram-Schmidt factorizations of Daniel et al. [1] to realize the method of [8] for solving linearly constrained linear least squares problems. The main advantage of using these factorizations is that it is relatively easy to take data changes into account, if necessary. The algorithm is compared numerically with two other codes, one of them published by Lawson and Hanson [3]. Further computational tests show the efficiency of the proposed methods, if a few data of the original problem are changed subsequently.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N5d49ffc2b0ec4a0a97e38679bc458ed9
15 N7494866b79044100bc8e383e6a1e8a57
16 sg:journal.1136759
17 schema:name A factorization method for the solution of constrained linear least squares problems allowing subsequent data changes
18 schema:pagination 431-463
19 schema:productId N738d7a8a79ad4e33baea162b3da5f909
20 Nb1caaf66f2c84dba8c4d97705fc7d747
21 Nfb6d56b684124a358362fda03ad656d5
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030999225
23 https://doi.org/10.1007/bf01404569
24 schema:sdDatePublished 2019-04-11T13:36
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Neaf52f1b271d40ad898fa69dfa987d78
27 schema:url http://link.springer.com/10.1007/BF01404569
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N5d49ffc2b0ec4a0a97e38679bc458ed9 schema:issueNumber 4
32 rdf:type schema:PublicationIssue
33 N738d7a8a79ad4e33baea162b3da5f909 schema:name readcube_id
34 schema:value 93ae136b4b83b8a684ea785a1c1bc8381a8aff493ee9e2f322192468d7bd9792
35 rdf:type schema:PropertyValue
36 N7494866b79044100bc8e383e6a1e8a57 schema:volumeNumber 31
37 rdf:type schema:PublicationVolume
38 Nb1caaf66f2c84dba8c4d97705fc7d747 schema:name dimensions_id
39 schema:value pub.1030999225
40 rdf:type schema:PropertyValue
41 Nb973c83dfe8947f1a730cc40d4bbfee9 rdf:first sg:person.011052705435.02
42 rdf:rest Nd001333f9536489b88434e0a79aaa199
43 Nd001333f9536489b88434e0a79aaa199 rdf:first sg:person.011465456275.61
44 rdf:rest rdf:nil
45 Neaf52f1b271d40ad898fa69dfa987d78 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 Nfb6d56b684124a358362fda03ad656d5 schema:name doi
48 schema:value 10.1007/bf01404569
49 rdf:type schema:PropertyValue
50 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
51 schema:name Information and Computing Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
54 schema:name Artificial Intelligence and Image Processing
55 rdf:type schema:DefinedTerm
56 sg:journal.1136759 schema:issn 0029-599X
57 0945-3245
58 schema:name Numerische Mathematik
59 rdf:type schema:Periodical
60 sg:person.011052705435.02 schema:affiliation https://www.grid.ac/institutes/grid.8379.5
61 schema:familyName Schittkowski
62 schema:givenName K.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011052705435.02
64 rdf:type schema:Person
65 sg:person.011465456275.61 schema:affiliation https://www.grid.ac/institutes/grid.8379.5
66 schema:familyName Stoer
67 schema:givenName J.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011465456275.61
69 rdf:type schema:Person
70 https://doi.org/10.1090/s0025-5718-1976-0431641-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016810497
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1137/0708038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062851970
73 rdf:type schema:CreativeWork
74 https://doi.org/10.2307/2005398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069692793
75 rdf:type schema:CreativeWork
76 https://doi.org/10.6028/jres.073b.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073599555
77 rdf:type schema:CreativeWork
78 https://www.grid.ac/institutes/grid.8379.5 schema:alternateName University of Würzburg
79 schema:name Institut für Angewandte Mathematik und Statistik, Universität Würzburg, Am Hubland, D-8700, Würzburg, Germany (Fed. Rep.)
80 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...