On the relation between quadratic termination and convergence properties of minimization algorithms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1977-12

AUTHORS

P. Baptist, J. Stoer

ABSTRACT

It is shown that the theory developed in part I of this paper [22] can be applied to some well-known minimization algorithms with the quadratic termination property to prove theirn-step quadratic convergence. In particular, some conjugate gradient methods, the rank-1-methods of Pearson and McCormick (see Pearson [18]) and the large class of rank-2-methods described by Oren and Luenberger [16, 17] are investigated. More... »

PAGES

367-391

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01404342

DOI

http://dx.doi.org/10.1007/bf01404342

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027689038


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Angewandte Mathematik und Statistik der Universit\u00e4t W\u00fcrzburg Am Hubland, D-8700, W\u00fcrzburg, Germany (Fed. Rep.)", 
          "id": "http://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Institut f\u00fcr Angewandte Mathematik und Statistik der Universit\u00e4t W\u00fcrzburg Am Hubland, D-8700, W\u00fcrzburg, Germany (Fed. Rep.)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baptist", 
        "givenName": "P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Angewandte Mathematik und Statistik der Universit\u00e4t W\u00fcrzburg Am Hubland, D-8700, W\u00fcrzburg, Germany (Fed. Rep.)", 
          "id": "http://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Institut f\u00fcr Angewandte Mathematik und Statistik der Universit\u00e4t W\u00fcrzburg Am Hubland, D-8700, W\u00fcrzburg, Germany (Fed. Rep.)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stoer", 
        "givenName": "J.", 
        "id": "sg:person.011465456275.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011465456275.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01681331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027133251", 
          "https://doi.org/10.1007/bf01681331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01584978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020745245", 
          "https://doi.org/10.1007/bf01584978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00933041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017943486", 
          "https://doi.org/10.1007/bf00933041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01580652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044983626", 
          "https://doi.org/10.1007/bf01580652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01681353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017545953", 
          "https://doi.org/10.1007/bf01681353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01584673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004050981", 
          "https://doi.org/10.1007/bf01584673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-5321-7_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005440823", 
          "https://doi.org/10.1007/978-3-0348-5321-7_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01389973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003941586", 
          "https://doi.org/10.1007/bf01389973"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1977-12", 
    "datePublishedReg": "1977-12-01", 
    "description": "It is shown that the theory developed in part I of this paper [22] can be applied to some well-known minimization algorithms with the quadratic termination property to prove theirn-step quadratic convergence. In particular, some conjugate gradient methods, the rank-1-methods of Pearson and McCormick (see Pearson [18]) and the large class of rank-2-methods described by Oren and Luenberger [16, 17] are investigated.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01404342", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136759", 
        "issn": [
          "0029-599X", 
          "0945-3245"
        ], 
        "name": "Numerische Mathematik", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "minimization algorithm", 
      "quadratic termination property", 
      "quadratic convergence", 
      "convergence properties", 
      "gradient method", 
      "large class", 
      "quadratic termination", 
      "termination properties", 
      "Part I", 
      "algorithm", 
      "Luenberger", 
      "convergence", 
      "theory", 
      "properties", 
      "class", 
      "McCormick", 
      "Pearson", 
      "Oren", 
      "relation", 
      "termination", 
      "paper", 
      "method"
    ], 
    "name": "On the relation between quadratic termination and convergence properties of minimization algorithms", 
    "pagination": "367-391", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027689038"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01404342"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01404342", 
      "https://app.dimensions.ai/details/publication/pub.1027689038"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T21:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_106.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01404342"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01404342'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01404342'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01404342'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01404342'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      22 PREDICATES      58 URIs      40 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01404342 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 anzsrc-for:0102
4 anzsrc-for:0103
5 schema:author N7c03e16c43a349908bfa7752aa431bb0
6 schema:citation sg:pub.10.1007/978-3-0348-5321-7_10
7 sg:pub.10.1007/bf00933041
8 sg:pub.10.1007/bf01389973
9 sg:pub.10.1007/bf01580652
10 sg:pub.10.1007/bf01584673
11 sg:pub.10.1007/bf01584978
12 sg:pub.10.1007/bf01681331
13 sg:pub.10.1007/bf01681353
14 schema:datePublished 1977-12
15 schema:datePublishedReg 1977-12-01
16 schema:description It is shown that the theory developed in part I of this paper [22] can be applied to some well-known minimization algorithms with the quadratic termination property to prove theirn-step quadratic convergence. In particular, some conjugate gradient methods, the rank-1-methods of Pearson and McCormick (see Pearson [18]) and the large class of rank-2-methods described by Oren and Luenberger [16, 17] are investigated.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N979e4da9727f4e58818ddfd167c24da5
21 Ndd58ac82c94e44f59240e46f93eec271
22 sg:journal.1136759
23 schema:keywords Luenberger
24 McCormick
25 Oren
26 Part I
27 Pearson
28 algorithm
29 class
30 convergence
31 convergence properties
32 gradient method
33 large class
34 method
35 minimization algorithm
36 paper
37 properties
38 quadratic convergence
39 quadratic termination
40 quadratic termination property
41 relation
42 termination
43 termination properties
44 theory
45 schema:name On the relation between quadratic termination and convergence properties of minimization algorithms
46 schema:pagination 367-391
47 schema:productId N14417afe95704095a0bb84ab7a054088
48 N6e1d34c1ef224a8f9d5fb43351f80f6e
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027689038
50 https://doi.org/10.1007/bf01404342
51 schema:sdDatePublished 2022-06-01T21:56
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nddc2e3918dba4014b444f128ee5e6ab7
54 schema:url https://doi.org/10.1007/bf01404342
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N14417afe95704095a0bb84ab7a054088 schema:name doi
59 schema:value 10.1007/bf01404342
60 rdf:type schema:PropertyValue
61 N6e1d34c1ef224a8f9d5fb43351f80f6e schema:name dimensions_id
62 schema:value pub.1027689038
63 rdf:type schema:PropertyValue
64 N7c03e16c43a349908bfa7752aa431bb0 rdf:first Nb5f3f711268043058861076854a0065b
65 rdf:rest Nbfa84e0ca3984d2581fa03f9572ba1c0
66 N979e4da9727f4e58818ddfd167c24da5 schema:issueNumber 4
67 rdf:type schema:PublicationIssue
68 Nb5f3f711268043058861076854a0065b schema:affiliation grid-institutes:grid.8379.5
69 schema:familyName Baptist
70 schema:givenName P.
71 rdf:type schema:Person
72 Nbfa84e0ca3984d2581fa03f9572ba1c0 rdf:first sg:person.011465456275.61
73 rdf:rest rdf:nil
74 Ndd58ac82c94e44f59240e46f93eec271 schema:volumeNumber 28
75 rdf:type schema:PublicationVolume
76 Nddc2e3918dba4014b444f128ee5e6ab7 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
79 schema:name Mathematical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
82 schema:name Pure Mathematics
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
85 schema:name Applied Mathematics
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
88 schema:name Numerical and Computational Mathematics
89 rdf:type schema:DefinedTerm
90 sg:journal.1136759 schema:issn 0029-599X
91 0945-3245
92 schema:name Numerische Mathematik
93 schema:publisher Springer Nature
94 rdf:type schema:Periodical
95 sg:person.011465456275.61 schema:affiliation grid-institutes:grid.8379.5
96 schema:familyName Stoer
97 schema:givenName J.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011465456275.61
99 rdf:type schema:Person
100 sg:pub.10.1007/978-3-0348-5321-7_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005440823
101 https://doi.org/10.1007/978-3-0348-5321-7_10
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf00933041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017943486
104 https://doi.org/10.1007/bf00933041
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf01389973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003941586
107 https://doi.org/10.1007/bf01389973
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf01580652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044983626
110 https://doi.org/10.1007/bf01580652
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf01584673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004050981
113 https://doi.org/10.1007/bf01584673
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf01584978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020745245
116 https://doi.org/10.1007/bf01584978
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf01681331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027133251
119 https://doi.org/10.1007/bf01681331
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/bf01681353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017545953
122 https://doi.org/10.1007/bf01681353
123 rdf:type schema:CreativeWork
124 grid-institutes:grid.8379.5 schema:alternateName Institut für Angewandte Mathematik und Statistik der Universität Würzburg Am Hubland, D-8700, Würzburg, Germany (Fed. Rep.)
125 schema:name Institut für Angewandte Mathematik und Statistik der Universität Würzburg Am Hubland, D-8700, Würzburg, Germany (Fed. Rep.)
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...