Numerical solution of a hyperbolic free boundary problem with a method of characteristics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1985-03

AUTHORS

M. Brokate

ABSTRACT

For a free boundary problem for a linear hyperbolic system in one space dimension with two unknowns we discuss a numerical algorithm which combines the method of characteristics and the front tracking method. We prove quadratic resp. linear convergence and illustrate this with numerical examples.

PAGES

85-99

Journal

TITLE

Numerische Mathematik

ISSUE

1

VOLUME

46

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01400257

DOI

http://dx.doi.org/10.1007/bf01400257

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011867801


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Augsburg", 
          "id": "https://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Mathematisches Institut, Universit\u00e4t Augsburg, Memminger Str. 6, D-8900, Augsburg, Bundesrepublik Deutschland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brokate", 
        "givenName": "M.", 
        "id": "sg:person.012117736427.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012117736427.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/01630568208816139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000935903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01397373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003734400", 
          "https://doi.org/10.1007/bf01397373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0396(78)90013-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007347677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02241901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020037738", 
          "https://doi.org/10.1007/bf02241901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02241901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020037738", 
          "https://doi.org/10.1007/bf02241901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02243483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022095049", 
          "https://doi.org/10.1007/bf02243483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02243483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022095049", 
          "https://doi.org/10.1007/bf02243483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01396700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029169642", 
          "https://doi.org/10.1007/bf01396700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01394448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030605240", 
          "https://doi.org/10.1007/bf01394448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(70)90122-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040263297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01386033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041250675", 
          "https://doi.org/10.1007/bf01386033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01404347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045540995", 
          "https://doi.org/10.1007/bf01404347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01404347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045540995", 
          "https://doi.org/10.1007/bf01404347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/qam/613953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059348923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/qam/721422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059349117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7146/math.scand.a-10454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073612586"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1985-03", 
    "datePublishedReg": "1985-03-01", 
    "description": "For a free boundary problem for a linear hyperbolic system in one space dimension with two unknowns we discuss a numerical algorithm which combines the method of characteristics and the front tracking method. We prove quadratic resp. linear convergence and illustrate this with numerical examples.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01400257", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136759", 
        "issn": [
          "0029-599X", 
          "0945-3245"
        ], 
        "name": "Numerische Mathematik", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "name": "Numerical solution of a hyperbolic free boundary problem with a method of characteristics", 
    "pagination": "85-99", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "388b74155df2da4c86ffd0c5fb42e0a59c1ad7e2c6dacfd24372d573b624412c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01400257"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011867801"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01400257", 
      "https://app.dimensions.ai/details/publication/pub.1011867801"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46738_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01400257"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01400257'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01400257'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01400257'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01400257'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      20 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01400257 schema:author Nefb6b6d265714291b2b6d001278fdd40
2 schema:citation sg:pub.10.1007/bf01386033
3 sg:pub.10.1007/bf01394448
4 sg:pub.10.1007/bf01396700
5 sg:pub.10.1007/bf01397373
6 sg:pub.10.1007/bf01404347
7 sg:pub.10.1007/bf02241901
8 sg:pub.10.1007/bf02243483
9 https://doi.org/10.1016/0022-0396(78)90013-x
10 https://doi.org/10.1016/0022-247x(70)90122-8
11 https://doi.org/10.1080/01630568208816139
12 https://doi.org/10.1090/qam/613953
13 https://doi.org/10.1090/qam/721422
14 https://doi.org/10.7146/math.scand.a-10454
15 schema:datePublished 1985-03
16 schema:datePublishedReg 1985-03-01
17 schema:description For a free boundary problem for a linear hyperbolic system in one space dimension with two unknowns we discuss a numerical algorithm which combines the method of characteristics and the front tracking method. We prove quadratic resp. linear convergence and illustrate this with numerical examples.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N02df2c21b8d44ee088d4cc060f3c22f1
22 Ndec02009d4a047b8ab2965d5f7913ec7
23 sg:journal.1136759
24 schema:name Numerical solution of a hyperbolic free boundary problem with a method of characteristics
25 schema:pagination 85-99
26 schema:productId N24254c9e69164ccfab9c4c0ef78af28f
27 N6b0e1bc8e0cf4490ac574a00ebbc2c1f
28 Nda634c49bd524687b931d396a038d001
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011867801
30 https://doi.org/10.1007/bf01400257
31 schema:sdDatePublished 2019-04-11T13:27
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N5e184ceb7e78484aaeb14f5df0238987
34 schema:url http://link.springer.com/10.1007/BF01400257
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N02df2c21b8d44ee088d4cc060f3c22f1 schema:issueNumber 1
39 rdf:type schema:PublicationIssue
40 N24254c9e69164ccfab9c4c0ef78af28f schema:name dimensions_id
41 schema:value pub.1011867801
42 rdf:type schema:PropertyValue
43 N5e184ceb7e78484aaeb14f5df0238987 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N6b0e1bc8e0cf4490ac574a00ebbc2c1f schema:name readcube_id
46 schema:value 388b74155df2da4c86ffd0c5fb42e0a59c1ad7e2c6dacfd24372d573b624412c
47 rdf:type schema:PropertyValue
48 Nda634c49bd524687b931d396a038d001 schema:name doi
49 schema:value 10.1007/bf01400257
50 rdf:type schema:PropertyValue
51 Ndec02009d4a047b8ab2965d5f7913ec7 schema:volumeNumber 46
52 rdf:type schema:PublicationVolume
53 Nefb6b6d265714291b2b6d001278fdd40 rdf:first sg:person.012117736427.77
54 rdf:rest rdf:nil
55 sg:journal.1136759 schema:issn 0029-599X
56 0945-3245
57 schema:name Numerische Mathematik
58 rdf:type schema:Periodical
59 sg:person.012117736427.77 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
60 schema:familyName Brokate
61 schema:givenName M.
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012117736427.77
63 rdf:type schema:Person
64 sg:pub.10.1007/bf01386033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041250675
65 https://doi.org/10.1007/bf01386033
66 rdf:type schema:CreativeWork
67 sg:pub.10.1007/bf01394448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030605240
68 https://doi.org/10.1007/bf01394448
69 rdf:type schema:CreativeWork
70 sg:pub.10.1007/bf01396700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029169642
71 https://doi.org/10.1007/bf01396700
72 rdf:type schema:CreativeWork
73 sg:pub.10.1007/bf01397373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003734400
74 https://doi.org/10.1007/bf01397373
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf01404347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045540995
77 https://doi.org/10.1007/bf01404347
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf02241901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020037738
80 https://doi.org/10.1007/bf02241901
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf02243483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022095049
83 https://doi.org/10.1007/bf02243483
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0022-0396(78)90013-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007347677
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/0022-247x(70)90122-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040263297
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1080/01630568208816139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000935903
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1090/qam/613953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059348923
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1090/qam/721422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059349117
94 rdf:type schema:CreativeWork
95 https://doi.org/10.7146/math.scand.a-10454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073612586
96 rdf:type schema:CreativeWork
97 https://www.grid.ac/institutes/grid.7307.3 schema:alternateName University of Augsburg
98 schema:name Mathematisches Institut, Universität Augsburg, Memminger Str. 6, D-8900, Augsburg, Bundesrepublik Deutschland
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...