Comparing routines for the numerical solution of initial value problems of ordinary differential equations in multiple shooting View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1976-12

AUTHORS

H. J. Diekhoff, P. Lory, H. J. Oberle, H. J. Pesch, P. Rentrop, R. Seydel

ABSTRACT

The numerical solution of two-point boundary value problems and problems of optimal control by shooting techniques requires integration routines. By solving 15 real-life problems four well-known intergrators are compared relative to reliability, fastness and precision. Hints are given, which routines could be used for a problem.

PAGES

449-469

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01399607

DOI

http://dx.doi.org/10.1007/bf01399607

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006803632


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Mathematik der Technischen Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institut f\u00fcr Mathematik der Technischen Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Diekhoff", 
        "givenName": "H. J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Mathematik der Technischen Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institut f\u00fcr Mathematik der Technischen Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lory", 
        "givenName": "P.", 
        "id": "sg:person.010232304713.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010232304713.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Mathematik der Technischen Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institut f\u00fcr Mathematik der Technischen Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oberle", 
        "givenName": "H. J.", 
        "id": "sg:person.013206522406.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013206522406.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Mathematik der Technischen Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institut f\u00fcr Mathematik der Technischen Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pesch", 
        "givenName": "H. J.", 
        "id": "sg:person.014543723551.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Mathematik der Technischen Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institut f\u00fcr Mathematik der Technischen Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rentrop", 
        "givenName": "P.", 
        "id": "sg:person.014032223761.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014032223761.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Mathematik der Technischen Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institut f\u00fcr Mathematik der Technischen Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seydel", 
        "givenName": "R.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0065819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037277763", 
          "https://doi.org/10.1007/bfb0065819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02165234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017748018", 
          "https://doi.org/10.1007/bf02165234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0079167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043874136", 
          "https://doi.org/10.1007/bfb0079167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-85741-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008525983", 
          "https://doi.org/10.1007/978-3-642-85741-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01395926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037143657", 
          "https://doi.org/10.1007/bf01395926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02241980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042191135", 
          "https://doi.org/10.1007/bf02241980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01436529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043923350", 
          "https://doi.org/10.1007/bf01436529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01395950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037703060", 
          "https://doi.org/10.1007/bf01395950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01406969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001030131", 
          "https://doi.org/10.1007/bf01406969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-06867-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008768419", 
          "https://doi.org/10.1007/978-3-662-06867-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02241732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049544521", 
          "https://doi.org/10.1007/bf02241732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02234758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054501220", 
          "https://doi.org/10.1007/bf02234758"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1976-12", 
    "datePublishedReg": "1976-12-01", 
    "description": "The numerical solution of two-point boundary value problems and problems of optimal control by shooting techniques requires integration routines. By solving 15 real-life problems four well-known intergrators are compared relative to reliability, fastness and precision. Hints are given, which routines could be used for a problem.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01399607", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136759", 
        "issn": [
          "0029-599X", 
          "0945-3245"
        ], 
        "name": "Numerische Mathematik", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "value problem", 
      "numerical solution", 
      "two-point boundary value problem", 
      "ordinary differential equations", 
      "initial value problem", 
      "boundary value problem", 
      "differential equations", 
      "optimal control", 
      "multiple shooting", 
      "integration routine", 
      "problem", 
      "equations", 
      "solution", 
      "routines", 
      "technique", 
      "reliability", 
      "hints", 
      "four", 
      "shooting", 
      "control", 
      "precision", 
      "fastness"
    ], 
    "name": "Comparing routines for the numerical solution of initial value problems of ordinary differential equations in multiple shooting", 
    "pagination": "449-469", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006803632"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01399607"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01399607", 
      "https://app.dimensions.ai/details/publication/pub.1006803632"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_106.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01399607"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01399607'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01399607'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01399607'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01399607'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      59 URIs      39 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01399607 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Ncc59bdecc77742c2b1d9598ee65ca989
4 schema:citation sg:pub.10.1007/978-3-642-85741-6
5 sg:pub.10.1007/978-3-662-06867-0
6 sg:pub.10.1007/bf01395926
7 sg:pub.10.1007/bf01395950
8 sg:pub.10.1007/bf01406969
9 sg:pub.10.1007/bf01436529
10 sg:pub.10.1007/bf02165234
11 sg:pub.10.1007/bf02234758
12 sg:pub.10.1007/bf02241732
13 sg:pub.10.1007/bf02241980
14 sg:pub.10.1007/bfb0065819
15 sg:pub.10.1007/bfb0079167
16 schema:datePublished 1976-12
17 schema:datePublishedReg 1976-12-01
18 schema:description The numerical solution of two-point boundary value problems and problems of optimal control by shooting techniques requires integration routines. By solving 15 real-life problems four well-known intergrators are compared relative to reliability, fastness and precision. Hints are given, which routines could be used for a problem.
19 schema:genre article
20 schema:isAccessibleForFree true
21 schema:isPartOf N0b85651937b349cfb6b7ab975d5bb340
22 N9f0dfb3c1fe24ccc97e705518a90b4ba
23 sg:journal.1136759
24 schema:keywords boundary value problem
25 control
26 differential equations
27 equations
28 fastness
29 four
30 hints
31 initial value problem
32 integration routine
33 multiple shooting
34 numerical solution
35 optimal control
36 ordinary differential equations
37 precision
38 problem
39 reliability
40 routines
41 shooting
42 solution
43 technique
44 two-point boundary value problem
45 value problem
46 schema:name Comparing routines for the numerical solution of initial value problems of ordinary differential equations in multiple shooting
47 schema:pagination 449-469
48 schema:productId N0b5d1eb69c2c4d5ca770aad22e233539
49 Nbd4d843c084d42e09d6e1b9b4c176723
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006803632
51 https://doi.org/10.1007/bf01399607
52 schema:sdDatePublished 2022-10-01T06:26
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N69aa412fef8d48d18b7cee71e011b666
55 schema:url https://doi.org/10.1007/bf01399607
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0b5d1eb69c2c4d5ca770aad22e233539 schema:name dimensions_id
60 schema:value pub.1006803632
61 rdf:type schema:PropertyValue
62 N0b85651937b349cfb6b7ab975d5bb340 schema:issueNumber 4
63 rdf:type schema:PublicationIssue
64 N1413098239bc47f6992c7d02a02513ee rdf:first N4e66e828bef64d9492f5af4865ee8898
65 rdf:rest rdf:nil
66 N3559f50360fc4366945daf108de9fb85 rdf:first sg:person.014032223761.67
67 rdf:rest N1413098239bc47f6992c7d02a02513ee
68 N4e66e828bef64d9492f5af4865ee8898 schema:affiliation grid-institutes:grid.6936.a
69 schema:familyName Seydel
70 schema:givenName R.
71 rdf:type schema:Person
72 N69aa412fef8d48d18b7cee71e011b666 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N887f824ff0c749ac9ede848e28ef304b schema:affiliation grid-institutes:grid.6936.a
75 schema:familyName Diekhoff
76 schema:givenName H. J.
77 rdf:type schema:Person
78 N8a657b4d878e4a2ea2c5ff560ad835a7 rdf:first sg:person.013206522406.86
79 rdf:rest Ncd8f2f0766e24954945c5e294514281a
80 N9f0dfb3c1fe24ccc97e705518a90b4ba schema:volumeNumber 27
81 rdf:type schema:PublicationVolume
82 Nbb9e246d9712452a8edc0ff4804382fb rdf:first sg:person.010232304713.56
83 rdf:rest N8a657b4d878e4a2ea2c5ff560ad835a7
84 Nbd4d843c084d42e09d6e1b9b4c176723 schema:name doi
85 schema:value 10.1007/bf01399607
86 rdf:type schema:PropertyValue
87 Ncc59bdecc77742c2b1d9598ee65ca989 rdf:first N887f824ff0c749ac9ede848e28ef304b
88 rdf:rest Nbb9e246d9712452a8edc0ff4804382fb
89 Ncd8f2f0766e24954945c5e294514281a rdf:first sg:person.014543723551.22
90 rdf:rest N3559f50360fc4366945daf108de9fb85
91 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
92 schema:name Mathematical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
95 schema:name Numerical and Computational Mathematics
96 rdf:type schema:DefinedTerm
97 sg:journal.1136759 schema:issn 0029-599X
98 0945-3245
99 schema:name Numerische Mathematik
100 schema:publisher Springer Nature
101 rdf:type schema:Periodical
102 sg:person.010232304713.56 schema:affiliation grid-institutes:grid.6936.a
103 schema:familyName Lory
104 schema:givenName P.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010232304713.56
106 rdf:type schema:Person
107 sg:person.013206522406.86 schema:affiliation grid-institutes:grid.6936.a
108 schema:familyName Oberle
109 schema:givenName H. J.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013206522406.86
111 rdf:type schema:Person
112 sg:person.014032223761.67 schema:affiliation grid-institutes:grid.6936.a
113 schema:familyName Rentrop
114 schema:givenName P.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014032223761.67
116 rdf:type schema:Person
117 sg:person.014543723551.22 schema:affiliation grid-institutes:grid.6936.a
118 schema:familyName Pesch
119 schema:givenName H. J.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22
121 rdf:type schema:Person
122 sg:pub.10.1007/978-3-642-85741-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008525983
123 https://doi.org/10.1007/978-3-642-85741-6
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/978-3-662-06867-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008768419
126 https://doi.org/10.1007/978-3-662-06867-0
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/bf01395926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037143657
129 https://doi.org/10.1007/bf01395926
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/bf01395950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037703060
132 https://doi.org/10.1007/bf01395950
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/bf01406969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001030131
135 https://doi.org/10.1007/bf01406969
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/bf01436529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043923350
138 https://doi.org/10.1007/bf01436529
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/bf02165234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017748018
141 https://doi.org/10.1007/bf02165234
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/bf02234758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054501220
144 https://doi.org/10.1007/bf02234758
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/bf02241732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049544521
147 https://doi.org/10.1007/bf02241732
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/bf02241980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042191135
150 https://doi.org/10.1007/bf02241980
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/bfb0065819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037277763
153 https://doi.org/10.1007/bfb0065819
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/bfb0079167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043874136
156 https://doi.org/10.1007/bfb0079167
157 rdf:type schema:CreativeWork
158 grid-institutes:grid.6936.a schema:alternateName Institut für Mathematik der Technischen Universität München, Arcisstr. 21, D-8000, München 2, Germany
159 schema:name Institut für Mathematik der Technischen Universität München, Arcisstr. 21, D-8000, München 2, Germany
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...