Numerical treatment of delay differential equations by Hermite Interpolation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1981-06

AUTHORS

H. J. Oberle, H. J. Pesch

ABSTRACT

A class of numerical methods for the treatment of delay differential equations is developed. These methods are based on the wellknown Runge-Kutta-Fehlberg methods. The retarded argument is approximated by an appropriate multipoint Hermite Interpolation. The inherent jump discontinuities in the various derivatives of the solution are considered automatically.Problems with piecewise continuous right-hand side and initial function are treated too. Real-life problems are used for the numerical test and a comparison with other methods published in literature. More... »

PAGES

235-255

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01398255

DOI

http://dx.doi.org/10.1007/bf01398255

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034693912


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Mathematik der Technischen Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany (Fed. Rep.)", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institut f\u00fcr Mathematik der Technischen Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany (Fed. Rep.)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oberle", 
        "givenName": "H. J.", 
        "id": "sg:person.013206522406.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013206522406.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Mathematik der Technischen Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany (Fed. Rep.)", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institut f\u00fcr Mathematik der Technischen Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany (Fed. Rep.)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pesch", 
        "givenName": "H. J.", 
        "id": "sg:person.014543723551.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-93107-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051482128", 
          "https://doi.org/10.1007/978-3-642-93107-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02241732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049544521", 
          "https://doi.org/10.1007/bf02241732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0067469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006790873", 
          "https://doi.org/10.1007/bfb0067469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9467-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007143588", 
          "https://doi.org/10.1007/978-1-4684-9467-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-95030-8_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005742518", 
          "https://doi.org/10.1007/978-3-642-95030-8_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02234758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054501220", 
          "https://doi.org/10.1007/bf02234758"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1981-06", 
    "datePublishedReg": "1981-06-01", 
    "description": "A class of numerical methods for the treatment of delay differential equations is developed. These methods are based on the wellknown Runge-Kutta-Fehlberg methods. The retarded argument is approximated by an appropriate multipoint Hermite Interpolation. The inherent jump discontinuities in the various derivatives of the solution are considered automatically.Problems with piecewise continuous right-hand side and initial function are treated too. Real-life problems are used for the numerical test and a comparison with other methods published in literature.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01398255", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136759", 
        "issn": [
          "0029-599X", 
          "0945-3245"
        ], 
        "name": "Numerische Mathematik", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "keywords": [
      "delay differential equations", 
      "differential equations", 
      "continuous right-hand side", 
      "Hermite interpolation", 
      "right-hand side", 
      "retarded argument", 
      "Fehlberg method", 
      "Runge-Kutta", 
      "numerical treatment", 
      "real-life problems", 
      "numerical method", 
      "jump discontinuities", 
      "numerical tests", 
      "initial function", 
      "equations", 
      "interpolation", 
      "problem", 
      "discontinuities", 
      "solution", 
      "class", 
      "function", 
      "derivatives", 
      "argument", 
      "comparison", 
      "literature", 
      "side", 
      "test", 
      "treatment", 
      "method"
    ], 
    "name": "Numerical treatment of delay differential equations by Hermite Interpolation", 
    "pagination": "235-255", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034693912"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01398255"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01398255", 
      "https://app.dimensions.ai/details/publication/pub.1034693912"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_159.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01398255"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01398255'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01398255'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01398255'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01398255'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      60 URIs      46 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01398255 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nc122efc513e84bbf93ad70d60aad310a
4 schema:citation sg:pub.10.1007/978-1-4684-9467-9
5 sg:pub.10.1007/978-3-642-93107-9
6 sg:pub.10.1007/978-3-642-95030-8_4
7 sg:pub.10.1007/bf02234758
8 sg:pub.10.1007/bf02241732
9 sg:pub.10.1007/bfb0067469
10 schema:datePublished 1981-06
11 schema:datePublishedReg 1981-06-01
12 schema:description A class of numerical methods for the treatment of delay differential equations is developed. These methods are based on the wellknown Runge-Kutta-Fehlberg methods. The retarded argument is approximated by an appropriate multipoint Hermite Interpolation. The inherent jump discontinuities in the various derivatives of the solution are considered automatically.Problems with piecewise continuous right-hand side and initial function are treated too. Real-life problems are used for the numerical test and a comparison with other methods published in literature.
13 schema:genre article
14 schema:isAccessibleForFree false
15 schema:isPartOf N17ebf2b5cd7c4402a1a4b7545aea5b3e
16 Nccdad8cceba5435a9f3ed5074a47c2c5
17 sg:journal.1136759
18 schema:keywords Fehlberg method
19 Hermite interpolation
20 Runge-Kutta
21 argument
22 class
23 comparison
24 continuous right-hand side
25 delay differential equations
26 derivatives
27 differential equations
28 discontinuities
29 equations
30 function
31 initial function
32 interpolation
33 jump discontinuities
34 literature
35 method
36 numerical method
37 numerical tests
38 numerical treatment
39 problem
40 real-life problems
41 retarded argument
42 right-hand side
43 side
44 solution
45 test
46 treatment
47 schema:name Numerical treatment of delay differential equations by Hermite Interpolation
48 schema:pagination 235-255
49 schema:productId N1bfd5deb11d3485086b1fa55ba42d919
50 Nf0c8218cbfdc4c7eab4d9bce01e704de
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034693912
52 https://doi.org/10.1007/bf01398255
53 schema:sdDatePublished 2022-10-01T06:27
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Ncb7c16af2edf4a818965144fdf8df6a3
56 schema:url https://doi.org/10.1007/bf01398255
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N17ebf2b5cd7c4402a1a4b7545aea5b3e schema:issueNumber 2
61 rdf:type schema:PublicationIssue
62 N1bfd5deb11d3485086b1fa55ba42d919 schema:name dimensions_id
63 schema:value pub.1034693912
64 rdf:type schema:PropertyValue
65 Nac299b85e56c419bb2551521ff4ac321 rdf:first sg:person.014543723551.22
66 rdf:rest rdf:nil
67 Nc122efc513e84bbf93ad70d60aad310a rdf:first sg:person.013206522406.86
68 rdf:rest Nac299b85e56c419bb2551521ff4ac321
69 Ncb7c16af2edf4a818965144fdf8df6a3 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Nccdad8cceba5435a9f3ed5074a47c2c5 schema:volumeNumber 37
72 rdf:type schema:PublicationVolume
73 Nf0c8218cbfdc4c7eab4d9bce01e704de schema:name doi
74 schema:value 10.1007/bf01398255
75 rdf:type schema:PropertyValue
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
80 schema:name Numerical and Computational Mathematics
81 rdf:type schema:DefinedTerm
82 sg:journal.1136759 schema:issn 0029-599X
83 0945-3245
84 schema:name Numerische Mathematik
85 schema:publisher Springer Nature
86 rdf:type schema:Periodical
87 sg:person.013206522406.86 schema:affiliation grid-institutes:grid.6936.a
88 schema:familyName Oberle
89 schema:givenName H. J.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013206522406.86
91 rdf:type schema:Person
92 sg:person.014543723551.22 schema:affiliation grid-institutes:grid.6936.a
93 schema:familyName Pesch
94 schema:givenName H. J.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22
96 rdf:type schema:Person
97 sg:pub.10.1007/978-1-4684-9467-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007143588
98 https://doi.org/10.1007/978-1-4684-9467-9
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/978-3-642-93107-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051482128
101 https://doi.org/10.1007/978-3-642-93107-9
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/978-3-642-95030-8_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005742518
104 https://doi.org/10.1007/978-3-642-95030-8_4
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf02234758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054501220
107 https://doi.org/10.1007/bf02234758
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf02241732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049544521
110 https://doi.org/10.1007/bf02241732
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bfb0067469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006790873
113 https://doi.org/10.1007/bfb0067469
114 rdf:type schema:CreativeWork
115 grid-institutes:grid.6936.a schema:alternateName Institut für Mathematik der Technischen Universität München, Arcisstr. 21, D-8000, München 2, Germany (Fed. Rep.)
116 schema:name Institut für Mathematik der Technischen Universität München, Arcisstr. 21, D-8000, München 2, Germany (Fed. Rep.)
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...