A modified continuation method for the numerical solution of nonlinear two-point boundary value problems by shooting techniques View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1976-09

AUTHORS

P. Deuflhard, H. -J. Pesch, P. Rentrop

ABSTRACT

A modification of the well-known continuation (or homotopy) method for actual computation is worked out. Compared with the classical method, the modification seems to be a more reliable device for supplying useful initial data for shooting techniques. It is shown that computing time may be significantly reduced in the numerical solution of sensitive realistic two-point boundary value problems. More... »

PAGES

327-343

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01395950

DOI

http://dx.doi.org/10.1007/bf01395950

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037703060


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f. Mathematik, Techn. Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institut f. Mathematik, Techn. Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deuflhard", 
        "givenName": "P.", 
        "id": "sg:person.0631627001.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631627001.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f. Mathematik, Techn. Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institut f. Mathematik, Techn. Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pesch", 
        "givenName": "H. -J.", 
        "id": "sg:person.014543723551.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f. Mathematik, Techn. Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institut f. Mathematik, Techn. Universit\u00e4t M\u00fcnchen, Arcisstr. 21, D-8000, M\u00fcnchen 2, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rentrop", 
        "givenName": "P.", 
        "id": "sg:person.014032223761.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014032223761.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0079167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043874136", 
          "https://doi.org/10.1007/bfb0079167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0061613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046381083", 
          "https://doi.org/10.1007/bfb0061613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0079162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049877573", 
          "https://doi.org/10.1007/bfb0079162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02241609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022356719", 
          "https://doi.org/10.1007/bf02241609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-06867-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008768419", 
          "https://doi.org/10.1007/978-3-662-06867-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01397975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004895404", 
          "https://doi.org/10.1007/bf01397975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02241980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042191135", 
          "https://doi.org/10.1007/bf02241980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01406969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001030131", 
          "https://doi.org/10.1007/bf01406969"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1976-09", 
    "datePublishedReg": "1976-09-01", 
    "description": "A modification of the well-known continuation (or homotopy) method for actual computation is worked out. Compared with the classical method, the modification seems to be a more reliable device for supplying useful initial data for shooting techniques. It is shown that computing time may be significantly reduced in the numerical solution of sensitive realistic two-point boundary value problems.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01395950", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136759", 
        "issn": [
          "0029-599X", 
          "0945-3245"
        ], 
        "name": "Numerische Mathematik", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "keywords": [
      "numerical solution", 
      "two-point boundary value problem", 
      "continuation method", 
      "boundary value problem", 
      "reliable device", 
      "useful initial data", 
      "value problem", 
      "method", 
      "classical methods", 
      "devices", 
      "solution", 
      "technique", 
      "modification", 
      "problem", 
      "computation", 
      "actual computation", 
      "initial data", 
      "time", 
      "data"
    ], 
    "name": "A modified continuation method for the numerical solution of nonlinear two-point boundary value problems by shooting techniques", 
    "pagination": "327-343", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037703060"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01395950"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01395950", 
      "https://app.dimensions.ai/details/publication/pub.1037703060"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_139.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01395950"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01395950'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01395950'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01395950'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01395950'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      21 PREDICATES      52 URIs      36 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01395950 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N52c2680e4e0a46b2a492480f31008c01
4 schema:citation sg:pub.10.1007/978-3-662-06867-0
5 sg:pub.10.1007/bf01397975
6 sg:pub.10.1007/bf01406969
7 sg:pub.10.1007/bf02241609
8 sg:pub.10.1007/bf02241980
9 sg:pub.10.1007/bfb0061613
10 sg:pub.10.1007/bfb0079162
11 sg:pub.10.1007/bfb0079167
12 schema:datePublished 1976-09
13 schema:datePublishedReg 1976-09-01
14 schema:description A modification of the well-known continuation (or homotopy) method for actual computation is worked out. Compared with the classical method, the modification seems to be a more reliable device for supplying useful initial data for shooting techniques. It is shown that computing time may be significantly reduced in the numerical solution of sensitive realistic two-point boundary value problems.
15 schema:genre article
16 schema:isAccessibleForFree false
17 schema:isPartOf N4a7aa9fdb6624f44a13fecae13bf50b2
18 N7502aa7981344b56b9250bfbe66c2b66
19 sg:journal.1136759
20 schema:keywords actual computation
21 boundary value problem
22 classical methods
23 computation
24 continuation method
25 data
26 devices
27 initial data
28 method
29 modification
30 numerical solution
31 problem
32 reliable device
33 solution
34 technique
35 time
36 two-point boundary value problem
37 useful initial data
38 value problem
39 schema:name A modified continuation method for the numerical solution of nonlinear two-point boundary value problems by shooting techniques
40 schema:pagination 327-343
41 schema:productId N06ff521648b742c2933a9fe8571ba741
42 Nec62e1ced1884a8795b47bf4b5a12c1d
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037703060
44 https://doi.org/10.1007/bf01395950
45 schema:sdDatePublished 2022-09-02T15:45
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N6c6fc5e845df458497ec3d3ebdf76a1c
48 schema:url https://doi.org/10.1007/bf01395950
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N06ff521648b742c2933a9fe8571ba741 schema:name dimensions_id
53 schema:value pub.1037703060
54 rdf:type schema:PropertyValue
55 N4a7aa9fdb6624f44a13fecae13bf50b2 schema:issueNumber 3
56 rdf:type schema:PublicationIssue
57 N52c2680e4e0a46b2a492480f31008c01 rdf:first sg:person.0631627001.13
58 rdf:rest N79b98f6d3f1240d6a0c83ab643e93a1b
59 N6c6fc5e845df458497ec3d3ebdf76a1c schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N7502aa7981344b56b9250bfbe66c2b66 schema:volumeNumber 26
62 rdf:type schema:PublicationVolume
63 N79b98f6d3f1240d6a0c83ab643e93a1b rdf:first sg:person.014543723551.22
64 rdf:rest N7fe49e5ae6804e598e544fb67787be50
65 N7fe49e5ae6804e598e544fb67787be50 rdf:first sg:person.014032223761.67
66 rdf:rest rdf:nil
67 Nec62e1ced1884a8795b47bf4b5a12c1d schema:name doi
68 schema:value 10.1007/bf01395950
69 rdf:type schema:PropertyValue
70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
71 schema:name Mathematical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
74 schema:name Numerical and Computational Mathematics
75 rdf:type schema:DefinedTerm
76 sg:journal.1136759 schema:issn 0029-599X
77 0945-3245
78 schema:name Numerische Mathematik
79 schema:publisher Springer Nature
80 rdf:type schema:Periodical
81 sg:person.014032223761.67 schema:affiliation grid-institutes:grid.6936.a
82 schema:familyName Rentrop
83 schema:givenName P.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014032223761.67
85 rdf:type schema:Person
86 sg:person.014543723551.22 schema:affiliation grid-institutes:grid.6936.a
87 schema:familyName Pesch
88 schema:givenName H. -J.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22
90 rdf:type schema:Person
91 sg:person.0631627001.13 schema:affiliation grid-institutes:grid.6936.a
92 schema:familyName Deuflhard
93 schema:givenName P.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631627001.13
95 rdf:type schema:Person
96 sg:pub.10.1007/978-3-662-06867-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008768419
97 https://doi.org/10.1007/978-3-662-06867-0
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf01397975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004895404
100 https://doi.org/10.1007/bf01397975
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf01406969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001030131
103 https://doi.org/10.1007/bf01406969
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf02241609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022356719
106 https://doi.org/10.1007/bf02241609
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf02241980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042191135
109 https://doi.org/10.1007/bf02241980
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bfb0061613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046381083
112 https://doi.org/10.1007/bfb0061613
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bfb0079162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049877573
115 https://doi.org/10.1007/bfb0079162
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bfb0079167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043874136
118 https://doi.org/10.1007/bfb0079167
119 rdf:type schema:CreativeWork
120 grid-institutes:grid.6936.a schema:alternateName Institut f. Mathematik, Techn. Universität München, Arcisstr. 21, D-8000, München 2, Germany
121 schema:name Institut f. Mathematik, Techn. Universität München, Arcisstr. 21, D-8000, München 2, Germany
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...