γγ-angular correlations perturbed by stochastic fluctuating fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1973-10

AUTHORS

H. Winkler, E. Gerdau

ABSTRACT

On the base of the stochastic model of M. Blume for time-dependent hyperfine interactions the perturbation factors of the angular correlation function are evaluated. The results of numerical calculations for some special configurations of stochastic fluctuating field gradients as well as magnetic fields are presented. In the medium range where the fluctuation rates are comparable with the nuclear precession frequencies, interesting features are worked out for the spinrotation spectra. For the limiting case of very fast fluctuations it is proved that the well-known exponential decay of anisotropy as predicted by the theory of Abragam and Pound appears. More... »

PAGES

363-376

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01394538

DOI

http://dx.doi.org/10.1007/bf01394538

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030945387


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "II. Institut f\u00fcr Experimentalphysik der Universit\u00e4t Hamburg, Federal Republic of Germany", 
          "id": "http://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "II. Institut f\u00fcr Experimentalphysik der Universit\u00e4t Hamburg, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Winkler", 
        "givenName": "H.", 
        "id": "sg:person.01336053777.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336053777.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "II. Institut f\u00fcr Experimentalphysik der Universit\u00e4t Hamburg, Federal Republic of Germany", 
          "id": "http://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "II. Institut f\u00fcr Experimentalphysik der Universit\u00e4t Hamburg, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gerdau", 
        "givenName": "E.", 
        "id": "sg:person.016666757533.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016666757533.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02163332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053645727", 
          "https://doi.org/10.1007/bf02163332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-7731-3_48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044813196", 
          "https://doi.org/10.1007/978-94-011-7731-3_48"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1973-10", 
    "datePublishedReg": "1973-10-01", 
    "description": "On the base of the stochastic model of M. Blume for time-dependent hyperfine interactions the perturbation factors of the angular correlation function are evaluated. The results of numerical calculations for some special configurations of stochastic fluctuating field gradients as well as magnetic fields are presented. In the medium range where the fluctuation rates are comparable with the nuclear precession frequencies, interesting features are worked out for the spinrotation spectra. For the limiting case of very fast fluctuations it is proved that the well-known exponential decay of anisotropy as predicted by the theory of Abragam and Pound appears.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01394538", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313831", 
        "issn": [
          "0939-7922", 
          "1431-5831"
        ], 
        "name": "Zeitschrift f\u00fcr Physik A Hadrons and nuclei", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "262"
      }
    ], 
    "keywords": [
      "time-dependent hyperfine interactions", 
      "theory of Abragam", 
      "angular correlation function", 
      "fluctuating field", 
      "stochastic model", 
      "nuclear precession frequency", 
      "\u03b3\u03b3 angular correlations", 
      "magnetic field", 
      "correlation functions", 
      "precession frequency", 
      "numerical calculations", 
      "hyperfine interaction", 
      "perturbation factors", 
      "exponential decay", 
      "field gradient", 
      "fast fluctuations", 
      "interesting features", 
      "fluctuation rate", 
      "special configuration", 
      "Abragam", 
      "field", 
      "anisotropy", 
      "medium range", 
      "theory", 
      "fluctuations", 
      "calculations", 
      "model", 
      "decay", 
      "configuration", 
      "function", 
      "gradient", 
      "spectra", 
      "cases", 
      "frequency", 
      "results", 
      "range", 
      "features", 
      "interaction", 
      "Blume", 
      "correlation", 
      "base", 
      "rate", 
      "factors", 
      "pounds"
    ], 
    "name": "\u03b3\u03b3-angular correlations perturbed by stochastic fluctuating fields", 
    "pagination": "363-376", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030945387"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01394538"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01394538", 
      "https://app.dimensions.ai/details/publication/pub.1030945387"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_108.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01394538"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01394538'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01394538'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01394538'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01394538'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      21 PREDICATES      71 URIs      61 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01394538 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N75c7536769324275bbb84d417eaf4b0e
4 schema:citation sg:pub.10.1007/978-94-011-7731-3_48
5 sg:pub.10.1007/bf02163332
6 schema:datePublished 1973-10
7 schema:datePublishedReg 1973-10-01
8 schema:description On the base of the stochastic model of M. Blume for time-dependent hyperfine interactions the perturbation factors of the angular correlation function are evaluated. The results of numerical calculations for some special configurations of stochastic fluctuating field gradients as well as magnetic fields are presented. In the medium range where the fluctuation rates are comparable with the nuclear precession frequencies, interesting features are worked out for the spinrotation spectra. For the limiting case of very fast fluctuations it is proved that the well-known exponential decay of anisotropy as predicted by the theory of Abragam and Pound appears.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf Na969b67ca2b047f7812c2031385763f9
12 Ndd8fcd1e72eb40c8bfed34be7844d408
13 sg:journal.1313831
14 schema:keywords Abragam
15 Blume
16 angular correlation function
17 anisotropy
18 base
19 calculations
20 cases
21 configuration
22 correlation
23 correlation functions
24 decay
25 exponential decay
26 factors
27 fast fluctuations
28 features
29 field
30 field gradient
31 fluctuating field
32 fluctuation rate
33 fluctuations
34 frequency
35 function
36 gradient
37 hyperfine interaction
38 interaction
39 interesting features
40 magnetic field
41 medium range
42 model
43 nuclear precession frequency
44 numerical calculations
45 perturbation factors
46 pounds
47 precession frequency
48 range
49 rate
50 results
51 special configuration
52 spectra
53 stochastic model
54 theory
55 theory of Abragam
56 time-dependent hyperfine interactions
57 γγ angular correlations
58 schema:name γγ-angular correlations perturbed by stochastic fluctuating fields
59 schema:pagination 363-376
60 schema:productId N320a65ceb77e43b3b2cb537db1c5dc0d
61 N538b44ddad7f4a96bd0e5927669884a0
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030945387
63 https://doi.org/10.1007/bf01394538
64 schema:sdDatePublished 2022-09-02T15:44
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N6609d469ae524df4a4c6e36dc153398f
67 schema:url https://doi.org/10.1007/bf01394538
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N320a65ceb77e43b3b2cb537db1c5dc0d schema:name doi
72 schema:value 10.1007/bf01394538
73 rdf:type schema:PropertyValue
74 N538b44ddad7f4a96bd0e5927669884a0 schema:name dimensions_id
75 schema:value pub.1030945387
76 rdf:type schema:PropertyValue
77 N6609d469ae524df4a4c6e36dc153398f schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N75c7536769324275bbb84d417eaf4b0e rdf:first sg:person.01336053777.78
80 rdf:rest Na6956b0bf6454c20948136e318441d64
81 Na6956b0bf6454c20948136e318441d64 rdf:first sg:person.016666757533.32
82 rdf:rest rdf:nil
83 Na969b67ca2b047f7812c2031385763f9 schema:volumeNumber 262
84 rdf:type schema:PublicationVolume
85 Ndd8fcd1e72eb40c8bfed34be7844d408 schema:issueNumber 5
86 rdf:type schema:PublicationIssue
87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
88 schema:name Mathematical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
91 schema:name Statistics
92 rdf:type schema:DefinedTerm
93 sg:journal.1313831 schema:issn 0939-7922
94 1431-5831
95 schema:name Zeitschrift für Physik A Hadrons and nuclei
96 schema:publisher Springer Nature
97 rdf:type schema:Periodical
98 sg:person.01336053777.78 schema:affiliation grid-institutes:grid.9026.d
99 schema:familyName Winkler
100 schema:givenName H.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336053777.78
102 rdf:type schema:Person
103 sg:person.016666757533.32 schema:affiliation grid-institutes:grid.9026.d
104 schema:familyName Gerdau
105 schema:givenName E.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016666757533.32
107 rdf:type schema:Person
108 sg:pub.10.1007/978-94-011-7731-3_48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044813196
109 https://doi.org/10.1007/978-94-011-7731-3_48
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf02163332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053645727
112 https://doi.org/10.1007/bf02163332
113 rdf:type schema:CreativeWork
114 grid-institutes:grid.9026.d schema:alternateName II. Institut für Experimentalphysik der Universität Hamburg, Federal Republic of Germany
115 schema:name II. Institut für Experimentalphysik der Universität Hamburg, Federal Republic of Germany
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...