Modular forms associated to real quadratic fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1975-02

AUTHORS

Don Zagier

ABSTRACT

N/A

PAGES

1-46

References to SciGraph publications

  • 1969-03. On the functional equation of certain Dirichlet series in INVENTIONES MATHEMATICAE
  • 1924-12. Analytische funktionen und algebraische zahlen in ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITÄT HAMBURG
  • Journal

    TITLE

    Inventiones Mathematicae

    ISSUE

    1

    VOLUME

    30

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01389846

    DOI

    http://dx.doi.org/10.1007/bf01389846

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021953278


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "name": [
                "Mathematisches Institut der Universit\u00e4t, Wegelerstra\u00dfe 10, D-5300, Bonn, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zagier", 
            "givenName": "Don", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01389886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002137876", 
              "https://doi.org/10.1007/bf01389886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02954625", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026094831", 
              "https://doi.org/10.1007/bf02954625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02954625", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026094831", 
              "https://doi.org/10.1007/bf02954625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0305004100021095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054024137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2969/jmsj/02540547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070930687"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1975-02", 
        "datePublishedReg": "1975-02-01", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01389846", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136369", 
            "issn": [
              "0020-9910", 
              "1432-1297"
            ], 
            "name": "Inventiones Mathematicae", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "30"
          }
        ], 
        "name": "Modular forms associated to real quadratic fields", 
        "pagination": "1-46", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6896e55aaa6c9a7eb6904abaef789d57a4482af526c4abeb414d9fee09f6c643"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01389846"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021953278"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01389846", 
          "https://app.dimensions.ai/details/publication/pub.1021953278"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000481.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01389846"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01389846'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01389846'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01389846'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01389846'


     

    This table displays all metadata directly associated to this object as RDF triples.

    64 TRIPLES      19 PREDICATES      28 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01389846 schema:author Nae99f386610d425782af9a4e595fa1fb
    2 schema:citation sg:pub.10.1007/bf01389886
    3 sg:pub.10.1007/bf02954625
    4 https://doi.org/10.1017/s0305004100021095
    5 https://doi.org/10.2969/jmsj/02540547
    6 schema:datePublished 1975-02
    7 schema:datePublishedReg 1975-02-01
    8 schema:genre research_article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf Nb445c438963e4529980a661d29573540
    12 Nb494dd2122ff4a2895a3e08546dd3b37
    13 sg:journal.1136369
    14 schema:name Modular forms associated to real quadratic fields
    15 schema:pagination 1-46
    16 schema:productId N2aef446072fc498c94cdb1a6e0290bea
    17 N6bb26070fd404078a1f03cd405fed7bb
    18 Nd9b94cc0531543668d4234b7e1466493
    19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021953278
    20 https://doi.org/10.1007/bf01389846
    21 schema:sdDatePublished 2019-04-10T16:34
    22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    23 schema:sdPublisher Nc5fc0851cc354e2cb22cc2001f2b9740
    24 schema:url http://link.springer.com/10.1007/BF01389846
    25 sgo:license sg:explorer/license/
    26 sgo:sdDataset articles
    27 rdf:type schema:ScholarlyArticle
    28 N2aef446072fc498c94cdb1a6e0290bea schema:name doi
    29 schema:value 10.1007/bf01389846
    30 rdf:type schema:PropertyValue
    31 N6bb26070fd404078a1f03cd405fed7bb schema:name dimensions_id
    32 schema:value pub.1021953278
    33 rdf:type schema:PropertyValue
    34 N7ee874d8af074c7c9fe00856663fb9e0 schema:affiliation Nac1ffe5042f34f979232f1855c136b7f
    35 schema:familyName Zagier
    36 schema:givenName Don
    37 rdf:type schema:Person
    38 Nac1ffe5042f34f979232f1855c136b7f schema:name Mathematisches Institut der Universität, Wegelerstraße 10, D-5300, Bonn, Federal Republic of Germany
    39 rdf:type schema:Organization
    40 Nae99f386610d425782af9a4e595fa1fb rdf:first N7ee874d8af074c7c9fe00856663fb9e0
    41 rdf:rest rdf:nil
    42 Nb445c438963e4529980a661d29573540 schema:volumeNumber 30
    43 rdf:type schema:PublicationVolume
    44 Nb494dd2122ff4a2895a3e08546dd3b37 schema:issueNumber 1
    45 rdf:type schema:PublicationIssue
    46 Nc5fc0851cc354e2cb22cc2001f2b9740 schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 Nd9b94cc0531543668d4234b7e1466493 schema:name readcube_id
    49 schema:value 6896e55aaa6c9a7eb6904abaef789d57a4482af526c4abeb414d9fee09f6c643
    50 rdf:type schema:PropertyValue
    51 sg:journal.1136369 schema:issn 0020-9910
    52 1432-1297
    53 schema:name Inventiones Mathematicae
    54 rdf:type schema:Periodical
    55 sg:pub.10.1007/bf01389886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002137876
    56 https://doi.org/10.1007/bf01389886
    57 rdf:type schema:CreativeWork
    58 sg:pub.10.1007/bf02954625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026094831
    59 https://doi.org/10.1007/bf02954625
    60 rdf:type schema:CreativeWork
    61 https://doi.org/10.1017/s0305004100021095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054024137
    62 rdf:type schema:CreativeWork
    63 https://doi.org/10.2969/jmsj/02540547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070930687
    64 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...