Meromorphic extensions of generalised zeta functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1986-02

AUTHORS

Mark Pollicott

ABSTRACT

In this paper we give a full description of the spectrum of the Ruelle-Perron-Frobenius operator acting on the Banach space of Holder continuous functions on a subshift of finite type (Theorem 1). These results are then used to extend the meromorphic domain of generalised zeta functions (Theorem 2). The most important application of these results is to the domain of the Smale zeta function for Axiom A flows (Theorem 3). In the course of this paper we settle questions raised by Ruelle and Sunada. More... »

PAGES

147-164

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01388795

DOI

http://dx.doi.org/10.1007/bf01388795

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018897026


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut des Hautes \u00c9tudes Scientifiques", 
          "id": "https://www.grid.ac/institutes/grid.425258.c", 
          "name": [
            "IHES, 35 route de Chartres, F-91440, Bures-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pollicott", 
        "givenName": "Mark", 
        "id": "sg:person.013274740171.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013274740171.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/s0143385700002327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000770692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385700002327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000770692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0396(72)90012-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008061776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01076325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009164963", 
          "https://doi.org/10.1007/bf01076325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/blms/3.2.215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014864992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02393209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015444043", 
          "https://doi.org/10.1007/bf02393209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01389848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022209730", 
          "https://doi.org/10.1007/bf01389848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02760669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023231078", 
          "https://doi.org/10.1007/bf02760669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02762856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029675283", 
          "https://doi.org/10.1007/bf02762856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9904-1976-14003-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030614188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02546666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032559016", 
          "https://doi.org/10.1007/bf02546666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01343363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032651550", 
          "https://doi.org/10.1007/bf01343363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01608371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034058648", 
          "https://doi.org/10.1007/bf01608371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1975-0412389-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043336261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01403069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043801864", 
          "https://doi.org/10.1007/bf01403069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01403069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043801864", 
          "https://doi.org/10.1007/bf01403069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385700003333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048843003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385700003333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048843003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02786516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049150376", 
          "https://doi.org/10.1007/bf02786516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02786516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049150376", 
          "https://doi.org/10.1007/bf02786516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(79)90037-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049868743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0013371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051316870", 
          "https://doi.org/10.1007/bfb0013371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385700002315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054045231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385700002315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054045231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1967v022n05abeh001228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058193863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1972v027n04abeh001383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058194041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-70-03759-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064418311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-76-04338-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064418821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2006982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069694747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2373590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069900132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2373793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069900310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2969/aspm/00310047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104432899"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1986-02", 
    "datePublishedReg": "1986-02-01", 
    "description": "In this paper we give a full description of the spectrum of the Ruelle-Perron-Frobenius operator acting on the Banach space of Holder continuous functions on a subshift of finite type (Theorem 1). These results are then used to extend the meromorphic domain of generalised zeta functions (Theorem 2). The most important application of these results is to the domain of the Smale zeta function for Axiom A flows (Theorem 3). In the course of this paper we settle questions raised by Ruelle and Sunada.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01388795", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136369", 
        "issn": [
          "0020-9910", 
          "1432-1297"
        ], 
        "name": "Inventiones Mathematicae", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "85"
      }
    ], 
    "name": "Meromorphic extensions of generalised zeta functions", 
    "pagination": "147-164", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5a0a0599462024237c134ff4e4a7f259ace47ac5a4d219d1552bf895e65295d3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01388795"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018897026"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01388795", 
      "https://app.dimensions.ai/details/publication/pub.1018897026"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000487.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01388795"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01388795'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01388795'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01388795'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01388795'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01388795 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ncd244b4eef984792bd753cff18e7f9d3
4 schema:citation sg:pub.10.1007/bf01076325
5 sg:pub.10.1007/bf01343363
6 sg:pub.10.1007/bf01389848
7 sg:pub.10.1007/bf01403069
8 sg:pub.10.1007/bf01608371
9 sg:pub.10.1007/bf02393209
10 sg:pub.10.1007/bf02546666
11 sg:pub.10.1007/bf02760669
12 sg:pub.10.1007/bf02762856
13 sg:pub.10.1007/bf02786516
14 sg:pub.10.1007/bfb0013371
15 https://doi.org/10.1016/0022-0396(72)90012-5
16 https://doi.org/10.1016/0024-3795(79)90037-5
17 https://doi.org/10.1017/s0143385700002315
18 https://doi.org/10.1017/s0143385700002327
19 https://doi.org/10.1017/s0143385700003333
20 https://doi.org/10.1070/rm1967v022n05abeh001228
21 https://doi.org/10.1070/rm1972v027n04abeh001383
22 https://doi.org/10.1090/s0002-9904-1976-14003-7
23 https://doi.org/10.1090/s0002-9947-1975-0412389-8
24 https://doi.org/10.1112/blms/3.2.215
25 https://doi.org/10.1215/s0012-7094-70-03759-2
26 https://doi.org/10.1215/s0012-7094-76-04338-6
27 https://doi.org/10.2307/1969514
28 https://doi.org/10.2307/2006982
29 https://doi.org/10.2307/2373590
30 https://doi.org/10.2307/2373793
31 https://doi.org/10.2969/aspm/00310047
32 schema:datePublished 1986-02
33 schema:datePublishedReg 1986-02-01
34 schema:description In this paper we give a full description of the spectrum of the Ruelle-Perron-Frobenius operator acting on the Banach space of Holder continuous functions on a subshift of finite type (Theorem 1). These results are then used to extend the meromorphic domain of generalised zeta functions (Theorem 2). The most important application of these results is to the domain of the Smale zeta function for Axiom A flows (Theorem 3). In the course of this paper we settle questions raised by Ruelle and Sunada.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N61a2ab2af82f4b84b3fd6464d3a76830
39 Nbc668485144346649217e860f706cec5
40 sg:journal.1136369
41 schema:name Meromorphic extensions of generalised zeta functions
42 schema:pagination 147-164
43 schema:productId N01495c51324546cebc1b9b1e76b27ab9
44 Nbc38da5a03ef4413b64e50a542fdcdbb
45 Ncf561e7db8e44402ab8bbf080819c294
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018897026
47 https://doi.org/10.1007/bf01388795
48 schema:sdDatePublished 2019-04-10T23:19
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nb49e049b1b584783bcfd4ff831adf2b1
51 schema:url http://link.springer.com/10.1007/BF01388795
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N01495c51324546cebc1b9b1e76b27ab9 schema:name readcube_id
56 schema:value 5a0a0599462024237c134ff4e4a7f259ace47ac5a4d219d1552bf895e65295d3
57 rdf:type schema:PropertyValue
58 N61a2ab2af82f4b84b3fd6464d3a76830 schema:volumeNumber 85
59 rdf:type schema:PublicationVolume
60 Nb49e049b1b584783bcfd4ff831adf2b1 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Nbc38da5a03ef4413b64e50a542fdcdbb schema:name doi
63 schema:value 10.1007/bf01388795
64 rdf:type schema:PropertyValue
65 Nbc668485144346649217e860f706cec5 schema:issueNumber 1
66 rdf:type schema:PublicationIssue
67 Ncd244b4eef984792bd753cff18e7f9d3 rdf:first sg:person.013274740171.73
68 rdf:rest rdf:nil
69 Ncf561e7db8e44402ab8bbf080819c294 schema:name dimensions_id
70 schema:value pub.1018897026
71 rdf:type schema:PropertyValue
72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
73 schema:name Mathematical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
76 schema:name Pure Mathematics
77 rdf:type schema:DefinedTerm
78 sg:journal.1136369 schema:issn 0020-9910
79 1432-1297
80 schema:name Inventiones Mathematicae
81 rdf:type schema:Periodical
82 sg:person.013274740171.73 schema:affiliation https://www.grid.ac/institutes/grid.425258.c
83 schema:familyName Pollicott
84 schema:givenName Mark
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013274740171.73
86 rdf:type schema:Person
87 sg:pub.10.1007/bf01076325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009164963
88 https://doi.org/10.1007/bf01076325
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf01343363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032651550
91 https://doi.org/10.1007/bf01343363
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf01389848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022209730
94 https://doi.org/10.1007/bf01389848
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf01403069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043801864
97 https://doi.org/10.1007/bf01403069
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf01608371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034058648
100 https://doi.org/10.1007/bf01608371
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf02393209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015444043
103 https://doi.org/10.1007/bf02393209
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf02546666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032559016
106 https://doi.org/10.1007/bf02546666
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf02760669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023231078
109 https://doi.org/10.1007/bf02760669
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf02762856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029675283
112 https://doi.org/10.1007/bf02762856
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf02786516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049150376
115 https://doi.org/10.1007/bf02786516
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bfb0013371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051316870
118 https://doi.org/10.1007/bfb0013371
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0022-0396(72)90012-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008061776
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0024-3795(79)90037-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049868743
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1017/s0143385700002315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054045231
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1017/s0143385700002327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000770692
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1017/s0143385700003333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048843003
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1070/rm1967v022n05abeh001228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058193863
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1070/rm1972v027n04abeh001383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058194041
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1090/s0002-9904-1976-14003-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030614188
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1090/s0002-9947-1975-0412389-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043336261
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1112/blms/3.2.215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014864992
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1215/s0012-7094-70-03759-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064418311
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1215/s0012-7094-76-04338-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064418821
143 rdf:type schema:CreativeWork
144 https://doi.org/10.2307/1969514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674890
145 rdf:type schema:CreativeWork
146 https://doi.org/10.2307/2006982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069694747
147 rdf:type schema:CreativeWork
148 https://doi.org/10.2307/2373590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069900132
149 rdf:type schema:CreativeWork
150 https://doi.org/10.2307/2373793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069900310
151 rdf:type schema:CreativeWork
152 https://doi.org/10.2969/aspm/00310047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104432899
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.425258.c schema:alternateName Institut des Hautes Études Scientifiques
155 schema:name IHES, 35 route de Chartres, F-91440, Bures-sur-Yvette, France
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...