On the classification of geometric codes by polynomial functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-11

AUTHORS

D. G. Glynn, J. W. P. Hirschfeld

ABSTRACT

It is shown how to represent algebraically all functions that have a zero sum on all μ-dimensional subspaces ofPG(n,q) or ofAG(n,q). In this way one can calculate the dimensions of related codes, or one can represent interesting sets of points by functions.

PAGES

189-204

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01388474

DOI

http://dx.doi.org/10.1007/bf01388474

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041897513


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Statistics, University of Canterbury, private bag 4800, Christchurch, New Zealand", 
          "id": "http://www.grid.ac/institutes/grid.21006.35", 
          "name": [
            "Department of Mathematics and Statistics, University of Canterbury, private bag 4800, Christchurch, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glynn", 
        "givenName": "D. G.", 
        "id": "sg:person.010462533240.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010462533240.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematical and Physical Sciences, University of Sussex, BN1 9QH, Brighton, UK", 
          "id": "http://www.grid.ac/institutes/grid.12082.39", 
          "name": [
            "School of Mathematical and Physical Sciences, University of Sussex, BN1 9QH, Brighton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirschfeld", 
        "givenName": "J. W. P.", 
        "id": "sg:person.012124570705.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012124570705.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-62012-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031580879", 
          "https://doi.org/10.1007/978-3-642-62012-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00147433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044224582", 
          "https://doi.org/10.1007/bf00147433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0071521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036866075", 
          "https://doi.org/10.1007/bfb0071521"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995-11", 
    "datePublishedReg": "1995-11-01", 
    "description": "It is shown how to represent algebraically all functions that have a zero sum on all \u03bc-dimensional subspaces ofPG(n,q) or ofAG(n,q). In this way one can calculate the dimensions of related codes, or one can represent interesting sets of points by functions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01388474", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136552", 
        "issn": [
          "0925-1022", 
          "1573-7586"
        ], 
        "name": "Designs, Codes and Cryptography", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "geometric codes", 
      "dimensional subspace", 
      "polynomial function", 
      "related codes", 
      "interesting set", 
      "subspace", 
      "function", 
      "sum", 
      "code", 
      "set", 
      "dimensions", 
      "point", 
      "way", 
      "classification"
    ], 
    "name": "On the classification of geometric codes by polynomial functions", 
    "pagination": "189-204", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041897513"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01388474"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01388474", 
      "https://app.dimensions.ai/details/publication/pub.1041897513"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_278.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01388474"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01388474'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01388474'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01388474'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01388474'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      22 PREDICATES      43 URIs      32 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01388474 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N94317b804acb4f7087062ebfacd38b1c
4 schema:citation sg:pub.10.1007/978-3-642-62012-6
5 sg:pub.10.1007/bf00147433
6 sg:pub.10.1007/bfb0071521
7 schema:datePublished 1995-11
8 schema:datePublishedReg 1995-11-01
9 schema:description It is shown how to represent algebraically all functions that have a zero sum on all μ-dimensional subspaces ofPG(n,q) or ofAG(n,q). In this way one can calculate the dimensions of related codes, or one can represent interesting sets of points by functions.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N92d426f925e0478799ee7e2678d872d8
14 N9eac8692894040a2b5390c0ef21cee56
15 sg:journal.1136552
16 schema:keywords classification
17 code
18 dimensional subspace
19 dimensions
20 function
21 geometric codes
22 interesting set
23 point
24 polynomial function
25 related codes
26 set
27 subspace
28 sum
29 way
30 schema:name On the classification of geometric codes by polynomial functions
31 schema:pagination 189-204
32 schema:productId N8b8c9bc612cb4b8b9e9f30d60597e0c2
33 Ne7389f87241a463e9a44b309cdaf920c
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041897513
35 https://doi.org/10.1007/bf01388474
36 schema:sdDatePublished 2022-01-01T18:08
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N7ed8d969523b45b1bd37d9e38a44240a
39 schema:url https://doi.org/10.1007/bf01388474
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N7ed8d969523b45b1bd37d9e38a44240a schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N8b8c9bc612cb4b8b9e9f30d60597e0c2 schema:name dimensions_id
46 schema:value pub.1041897513
47 rdf:type schema:PropertyValue
48 N92d426f925e0478799ee7e2678d872d8 schema:issueNumber 3
49 rdf:type schema:PublicationIssue
50 N94317b804acb4f7087062ebfacd38b1c rdf:first sg:person.010462533240.40
51 rdf:rest Na75b54cf3e6f4e3b9a6dcd90d18c5cae
52 N9eac8692894040a2b5390c0ef21cee56 schema:volumeNumber 6
53 rdf:type schema:PublicationVolume
54 Na75b54cf3e6f4e3b9a6dcd90d18c5cae rdf:first sg:person.012124570705.64
55 rdf:rest rdf:nil
56 Ne7389f87241a463e9a44b309cdaf920c schema:name doi
57 schema:value 10.1007/bf01388474
58 rdf:type schema:PropertyValue
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
63 schema:name Pure Mathematics
64 rdf:type schema:DefinedTerm
65 sg:journal.1136552 schema:issn 0925-1022
66 1573-7586
67 schema:name Designs, Codes and Cryptography
68 schema:publisher Springer Nature
69 rdf:type schema:Periodical
70 sg:person.010462533240.40 schema:affiliation grid-institutes:grid.21006.35
71 schema:familyName Glynn
72 schema:givenName D. G.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010462533240.40
74 rdf:type schema:Person
75 sg:person.012124570705.64 schema:affiliation grid-institutes:grid.12082.39
76 schema:familyName Hirschfeld
77 schema:givenName J. W. P.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012124570705.64
79 rdf:type schema:Person
80 sg:pub.10.1007/978-3-642-62012-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031580879
81 https://doi.org/10.1007/978-3-642-62012-6
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf00147433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044224582
84 https://doi.org/10.1007/bf00147433
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bfb0071521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036866075
87 https://doi.org/10.1007/bfb0071521
88 rdf:type schema:CreativeWork
89 grid-institutes:grid.12082.39 schema:alternateName School of Mathematical and Physical Sciences, University of Sussex, BN1 9QH, Brighton, UK
90 schema:name School of Mathematical and Physical Sciences, University of Sussex, BN1 9QH, Brighton, UK
91 rdf:type schema:Organization
92 grid-institutes:grid.21006.35 schema:alternateName Department of Mathematics and Statistics, University of Canterbury, private bag 4800, Christchurch, New Zealand
93 schema:name Department of Mathematics and Statistics, University of Canterbury, private bag 4800, Christchurch, New Zealand
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...