Symplectic phase flow approximation for the numerical integration of canonical systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-12

AUTHORS

S. Miesbach, H. J. Pesch

ABSTRACT

New methods are presented for the numerical integration of ordinary differential equations of the important family of Hamiltonian dynamical systems. These methods preserve the Poincaré invariants and, therefore, mimic relevant qualitative properties of the exact solutions. The methods are based on a Runge-Kutta-type ansatz for the generating function to realize the integration steps by canonical transformations. A fourth-order method is given and its implementation is discussed. Numerical results are presented for the Hénon-Heiles system, which describes the motion of a star in an axisymmetric galaxy. More... »

PAGES

501-521

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01385523

DOI

http://dx.doi.org/10.1007/bf01385523

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014744961


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mathematisches Institut, Technische Universit\u00e4t M\u00fcnchen, Arcisstrasse 21, W-8000, M\u00fcnchen 2, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Mathematisches Institut, Technische Universit\u00e4t M\u00fcnchen, Arcisstrasse 21, W-8000, M\u00fcnchen 2, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miesbach", 
        "givenName": "S.", 
        "id": "sg:person.014243476305.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014243476305.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mathematisches Institut, Technische Universit\u00e4t M\u00fcnchen, Arcisstrasse 21, W-8000, M\u00fcnchen 2, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Mathematisches Institut, Technische Universit\u00e4t M\u00fcnchen, Arcisstrasse 21, W-8000, M\u00fcnchen 2, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pesch", 
        "givenName": "H. J.", 
        "id": "sg:person.014543723551.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0078537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011066813", 
          "https://doi.org/10.1007/bfb0078537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00945133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016610066", 
          "https://doi.org/10.1007/bf00945133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1693-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035545882", 
          "https://doi.org/10.1007/978-1-4757-1693-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01954907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026384075", 
          "https://doi.org/10.1007/bf01954907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01401041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048159184", 
          "https://doi.org/10.1007/bf01401041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02241732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049544521", 
          "https://doi.org/10.1007/bf02241732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-5592-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004061796", 
          "https://doi.org/10.1007/978-1-4757-5592-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992-12", 
    "datePublishedReg": "1992-12-01", 
    "description": "New methods are presented for the numerical integration of ordinary differential equations of the important family of Hamiltonian dynamical systems. These methods preserve the Poincar\u00e9 invariants and, therefore, mimic relevant qualitative properties of the exact solutions. The methods are based on a Runge-Kutta-type ansatz for the generating function to realize the integration steps by canonical transformations. A fourth-order method is given and its implementation is discussed. Numerical results are presented for the H\u00e9non-Heiles system, which describes the motion of a star in an axisymmetric galaxy.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01385523", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136759", 
        "issn": [
          "0029-599X", 
          "0945-3245"
        ], 
        "name": "Numerische Mathematik", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "61"
      }
    ], 
    "keywords": [
      "numerical integration", 
      "Hamiltonian dynamical systems", 
      "ordinary differential equations", 
      "fourth order method", 
      "relevant qualitative properties", 
      "H\u00e9non-Heiles system", 
      "dynamical systems", 
      "differential equations", 
      "axisymmetric galaxies", 
      "Poincar\u00e9 invariant", 
      "exact solution", 
      "Runge-Kutta", 
      "type ansatz", 
      "canonical system", 
      "flow approximation", 
      "qualitative properties", 
      "canonical transformation", 
      "integration step", 
      "numerical results", 
      "ansatz", 
      "new method", 
      "equations", 
      "approximation", 
      "invariants", 
      "galaxies", 
      "stars", 
      "motion", 
      "system", 
      "important family", 
      "solution", 
      "properties", 
      "function", 
      "integration", 
      "transformation", 
      "implementation", 
      "step", 
      "results", 
      "family", 
      "method"
    ], 
    "name": "Symplectic phase flow approximation for the numerical integration of canonical systems", 
    "pagination": "501-521", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014744961"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01385523"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01385523", 
      "https://app.dimensions.ai/details/publication/pub.1014744961"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_232.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01385523"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01385523'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01385523'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01385523'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01385523'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      21 PREDICATES      71 URIs      56 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01385523 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N3a4778a927f64d719cacfaaa32612d6c
4 schema:citation sg:pub.10.1007/978-1-4757-1693-1
5 sg:pub.10.1007/978-1-4757-5592-3
6 sg:pub.10.1007/bf00945133
7 sg:pub.10.1007/bf01401041
8 sg:pub.10.1007/bf01954907
9 sg:pub.10.1007/bf02241732
10 sg:pub.10.1007/bfb0078537
11 schema:datePublished 1992-12
12 schema:datePublishedReg 1992-12-01
13 schema:description New methods are presented for the numerical integration of ordinary differential equations of the important family of Hamiltonian dynamical systems. These methods preserve the Poincaré invariants and, therefore, mimic relevant qualitative properties of the exact solutions. The methods are based on a Runge-Kutta-type ansatz for the generating function to realize the integration steps by canonical transformations. A fourth-order method is given and its implementation is discussed. Numerical results are presented for the Hénon-Heiles system, which describes the motion of a star in an axisymmetric galaxy.
14 schema:genre article
15 schema:isAccessibleForFree false
16 schema:isPartOf N0022c0203c3144daa16a307b74cb8abc
17 Nb29e2733b0094ba9a26f7f349172bf24
18 sg:journal.1136759
19 schema:keywords Hamiltonian dynamical systems
20 Hénon-Heiles system
21 Poincaré invariant
22 Runge-Kutta
23 ansatz
24 approximation
25 axisymmetric galaxies
26 canonical system
27 canonical transformation
28 differential equations
29 dynamical systems
30 equations
31 exact solution
32 family
33 flow approximation
34 fourth order method
35 function
36 galaxies
37 implementation
38 important family
39 integration
40 integration step
41 invariants
42 method
43 motion
44 new method
45 numerical integration
46 numerical results
47 ordinary differential equations
48 properties
49 qualitative properties
50 relevant qualitative properties
51 results
52 solution
53 stars
54 step
55 system
56 transformation
57 type ansatz
58 schema:name Symplectic phase flow approximation for the numerical integration of canonical systems
59 schema:pagination 501-521
60 schema:productId N0fd3fff184ce44e782982e8970a13d2d
61 N49a63585477d4f57a39b89675f089e73
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014744961
63 https://doi.org/10.1007/bf01385523
64 schema:sdDatePublished 2022-09-02T15:46
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Ne0c8e2911bbb46ae82674ef87adb4d66
67 schema:url https://doi.org/10.1007/bf01385523
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N0022c0203c3144daa16a307b74cb8abc schema:issueNumber 1
72 rdf:type schema:PublicationIssue
73 N0fd3fff184ce44e782982e8970a13d2d schema:name dimensions_id
74 schema:value pub.1014744961
75 rdf:type schema:PropertyValue
76 N3a4778a927f64d719cacfaaa32612d6c rdf:first sg:person.014243476305.41
77 rdf:rest Na42f910426b34764873eaacc97a1203b
78 N49a63585477d4f57a39b89675f089e73 schema:name doi
79 schema:value 10.1007/bf01385523
80 rdf:type schema:PropertyValue
81 Na42f910426b34764873eaacc97a1203b rdf:first sg:person.014543723551.22
82 rdf:rest rdf:nil
83 Nb29e2733b0094ba9a26f7f349172bf24 schema:volumeNumber 61
84 rdf:type schema:PublicationVolume
85 Ne0c8e2911bbb46ae82674ef87adb4d66 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
88 schema:name Mathematical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
91 schema:name Numerical and Computational Mathematics
92 rdf:type schema:DefinedTerm
93 sg:journal.1136759 schema:issn 0029-599X
94 0945-3245
95 schema:name Numerische Mathematik
96 schema:publisher Springer Nature
97 rdf:type schema:Periodical
98 sg:person.014243476305.41 schema:affiliation grid-institutes:grid.6936.a
99 schema:familyName Miesbach
100 schema:givenName S.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014243476305.41
102 rdf:type schema:Person
103 sg:person.014543723551.22 schema:affiliation grid-institutes:grid.6936.a
104 schema:familyName Pesch
105 schema:givenName H. J.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22
107 rdf:type schema:Person
108 sg:pub.10.1007/978-1-4757-1693-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035545882
109 https://doi.org/10.1007/978-1-4757-1693-1
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/978-1-4757-5592-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004061796
112 https://doi.org/10.1007/978-1-4757-5592-3
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf00945133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016610066
115 https://doi.org/10.1007/bf00945133
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf01401041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048159184
118 https://doi.org/10.1007/bf01401041
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf01954907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026384075
121 https://doi.org/10.1007/bf01954907
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf02241732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049544521
124 https://doi.org/10.1007/bf02241732
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bfb0078537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011066813
127 https://doi.org/10.1007/bfb0078537
128 rdf:type schema:CreativeWork
129 grid-institutes:grid.6936.a schema:alternateName Mathematisches Institut, Technische Universität München, Arcisstrasse 21, W-8000, München 2, Germany
130 schema:name Mathematisches Institut, Technische Universität München, Arcisstrasse 21, W-8000, München 2, Germany
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...