Ontology type: schema:ScholarlyArticle
1992-12
AUTHORS ABSTRACTIn this paper, we present variants of a convergent projection and contraction algorithm [25] for solving projection problems over polytope. By using the special struture of the projection problems, an iterative algorithm with constant step-size is given, which is globally linearly convergent. These algorithms are simple to implement and each step of the method requires only a few matrix-vector multiplications. Especially, for minimums norm problems over transportation or general network polytopes onlyO(n) additions andO(n) multiplications are needed at each iteration. Numerical results for randomly generated test problems over network polytopes, up to 10000 variables, indicate that the presented algorithms are simple and efficient even for large problems. More... »
PAGES73-90
http://scigraph.springernature.com/pub.10.1007/bf01385498
DOIhttp://dx.doi.org/10.1007/bf01385498
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1047494543
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institu f\u00fcr Angewandte Mathematik und Statistik, Universit\u00e4t W\u00fcrzburg, Am Hubland, W-8700, W\u00fcrzburg, Germany",
"id": "http://www.grid.ac/institutes/grid.8379.5",
"name": [
"Institu f\u00fcr Angewandte Mathematik und Statistik, Universit\u00e4t W\u00fcrzburg, Am Hubland, W-8700, W\u00fcrzburg, Germany"
],
"type": "Organization"
},
"familyName": "He",
"givenName": "Bingsheng",
"id": "sg:person.014424663025.19",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424663025.19"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institu f\u00fcr Angewandte Mathematik und Statistik, Universit\u00e4t W\u00fcrzburg, Am Hubland, W-8700, W\u00fcrzburg, Germany",
"id": "http://www.grid.ac/institutes/grid.8379.5",
"name": [
"Institu f\u00fcr Angewandte Mathematik und Statistik, Universit\u00e4t W\u00fcrzburg, Am Hubland, W-8700, W\u00fcrzburg, Germany"
],
"type": "Organization"
},
"familyName": "Stoer",
"givenName": "Josef",
"id": "sg:person.011465456275.61",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011465456275.61"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00939081",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050530004",
"https://doi.org/10.1007/bf00939081"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02592073",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000925191",
"https://doi.org/10.1007/bf02592073"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00935545",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015458789",
"https://doi.org/10.1007/bf00935545"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01268170",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017224378",
"https://doi.org/10.1007/bf01268170"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02591799",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040368851",
"https://doi.org/10.1007/bf02591799"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01396325",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037333582",
"https://doi.org/10.1007/bf01396325"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01182323",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043027931",
"https://doi.org/10.1007/bf01182323"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02591962",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034228875",
"https://doi.org/10.1007/bf02591962"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00934130",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049636719",
"https://doi.org/10.1007/bf00934130"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01588976",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027622431",
"https://doi.org/10.1007/bf01588976"
],
"type": "CreativeWork"
}
],
"datePublished": "1992-12",
"datePublishedReg": "1992-12-01",
"description": "In this paper, we present variants of a convergent projection and contraction algorithm [25] for solving projection problems over polytope. By using the special struture of the projection problems, an iterative algorithm with constant step-size is given, which is globally linearly convergent. These algorithms are simple to implement and each step of the method requires only a few matrix-vector multiplications. Especially, for minimums norm problems over transportation or general network polytopes onlyO(n) additions andO(n) multiplications are needed at each iteration. Numerical results for randomly generated test problems over network polytopes, up to 10000 variables, indicate that the presented algorithms are simple and efficient even for large problems.",
"genre": "article",
"id": "sg:pub.10.1007/bf01385498",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136759",
"issn": [
"0029-599X",
"0945-3245"
],
"name": "Numerische Mathematik",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "61"
}
],
"keywords": [
"projection problem",
"minimum norm problem",
"matrix-vector multiplication",
"norm problem",
"test problems",
"iterative algorithm",
"large problems",
"contraction algorithm",
"polytope",
"numerical results",
"algorithm",
"problem",
"iteration",
"multiplication",
"convergent",
"solution",
"variables",
"struture",
"projections",
"step",
"results",
"transportation",
"variants",
"addition",
"convergent projections",
"method",
"paper"
],
"name": "Solution of projection problems over polytopes",
"pagination": "73-90",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1047494543"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf01385498"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf01385498",
"https://app.dimensions.ai/details/publication/pub.1047494543"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:01",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_232.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf01385498"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01385498'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01385498'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01385498'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01385498'
This table displays all metadata directly associated to this object as RDF triples.
132 TRIPLES
22 PREDICATES
63 URIs
45 LITERALS
6 BLANK NODES