Some non-existence results on divisible difference sets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-03

AUTHORS

K. T. Arasu, James Davis, Dieter Jungnickel, Alexander Pott

ABSTRACT

In this paper, we shall prove several non-existence results for divisible difference sets, using three approaches:character sum arguments similar to the work of Turyn [25] for ordinary difference sets,involution arguments andmultipliers in conjunction with results on ordinary difference sets. character sum arguments similar to the work of Turyn [25] for ordinary difference sets, involution arguments and multipliers in conjunction with results on ordinary difference sets. Among other results, we show that an abelian affine difference set of odd orders (s not a perfect square) inG can exist only if the Sylow 2-subgroup ofG is cyclic. We also obtain a non-existence result for non-cyclic (n, n, n, 1) relative difference sets of odd ordern. More... »

PAGES

1-8

References to SciGraph publications

  • 1987-08. A new result on difference sets with -1 as multiplier in GEOMETRIAE DEDICATA
  • 1989-11. On abelian difference sets with multiplier — 1 in ARCHIV DER MATHEMATIK
  • 1982-12. Difference sets with multiplier -1 in ARCHIV DER MATHEMATIK
  • 1990-02. On automorphism groups of divisible designs, II: Group invariant generalised conference matrices in ARCHIV DER MATHEMATIK
  • 1986-09. A note on affine difference sets in ARCHIV DER MATHEMATIK
  • 1987-12. On a theorem of Ganley in GRAPHS AND COMBINATORICS
  • 1967. Endliche Gruppen I in NONE
  • 1976-12. On a paper of dembowski and ostrom in ARCHIV DER MATHEMATIK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01375467

    DOI

    http://dx.doi.org/10.1007/bf01375467

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1048479502


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1114", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Paediatrics and Reproductive Medicine", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Wright State University", 
              "id": "https://www.grid.ac/institutes/grid.268333.f", 
              "name": [
                "Department of Mathematics and Statistics, Wright State University, 45435, Dayton, Ohio, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arasu", 
            "givenName": "K. T.", 
            "id": "sg:person.010275733576.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275733576.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Richmond", 
              "id": "https://www.grid.ac/institutes/grid.267065.0", 
              "name": [
                "Dept. of Mathematics and Computer Science, University of Richmond, 23173, Richmond, Virginia, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Davis", 
            "givenName": "James", 
            "id": "sg:person.07454431554.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07454431554.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Giessen", 
              "id": "https://www.grid.ac/institutes/grid.8664.c", 
              "name": [
                "Mathematisches Institut, Justus-Liebig-Universit\u00e4t Giessen, Arndtstr. 2, D-6300, Giessen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jungnickel", 
            "givenName": "Dieter", 
            "id": "sg:person.016273474670.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Giessen", 
              "id": "https://www.grid.ac/institutes/grid.8664.c", 
              "name": [
                "Mathematisches Institut, Justus-Liebig-Universit\u00e4t Giessen, Arndtstr. 2, D-6300, Giessen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pott", 
            "givenName": "Alexander", 
            "id": "sg:person.012746300337.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012746300337.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0097-3165(87)90068-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001207970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01192006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003543369", 
              "https://doi.org/10.1007/bf01192006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01192006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003543369", 
              "https://doi.org/10.1007/bf01192006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0097-3165(90)90073-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003611586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01304825", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019212155", 
              "https://doi.org/10.1007/bf01304825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01304825", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019212155", 
              "https://doi.org/10.1007/bf01304825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-64981-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019501154", 
              "https://doi.org/10.1007/978-3-642-64981-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-64981-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019501154", 
              "https://doi.org/10.1007/978-3-642-64981-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0097-3165(89)90029-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020862947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00181315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024366276", 
              "https://doi.org/10.1007/bf00181315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0012-365x(89)90317-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033683174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01324726", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038175951", 
              "https://doi.org/10.1007/bf01324726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01324726", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038175951", 
              "https://doi.org/10.1007/bf01324726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01788537", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042280796", 
              "https://doi.org/10.1007/bf01788537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01788537", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042280796", 
              "https://doi.org/10.1007/bf01788537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01224646", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043129954", 
              "https://doi.org/10.1007/bf01224646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01224646", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043129954", 
              "https://doi.org/10.1007/bf01224646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01198118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043897125", 
              "https://doi.org/10.1007/bf01198118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01198118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043897125", 
              "https://doi.org/10.1007/bf01198118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0097-3165(81)90002-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051275978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/pjm.1965.15.319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069063507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2372676", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069899313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4153/cjm-1952-026-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072263816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4153/cjm-1964-076-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072264615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4153/cjm-1982-018-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072266851"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1991-03", 
        "datePublishedReg": "1991-03-01", 
        "description": "In this paper, we shall prove several non-existence results for divisible difference sets, using three approaches:character sum arguments similar to the work of Turyn [25] for ordinary difference sets,involution arguments andmultipliers in conjunction with results on ordinary difference sets. character sum arguments similar to the work of Turyn [25] for ordinary difference sets, involution arguments and multipliers in conjunction with results on ordinary difference sets. Among other results, we show that an abelian affine difference set of odd orders (s not a perfect square) inG can exist only if the Sylow 2-subgroup ofG is cyclic. We also obtain a non-existence result for non-cyclic (n, n, n, 1) relative difference sets of odd ordern.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01375467", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136493", 
            "issn": [
              "0209-9683", 
              "1439-6912"
            ], 
            "name": "Combinatorica", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "name": "Some non-existence results on divisible difference sets", 
        "pagination": "1-8", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e6f2843f753d4b909e1eb7f83b2015adca185b2544c7e1231fc3485362f27746"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01375467"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1048479502"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01375467", 
          "https://app.dimensions.ai/details/publication/pub.1048479502"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46772_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01375467"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01375467'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01375467'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01375467'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01375467'


     

    This table displays all metadata directly associated to this object as RDF triples.

    150 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01375467 schema:about anzsrc-for:11
    2 anzsrc-for:1114
    3 schema:author Nb8076dcf20ee4c20a872999c2dd0e6ad
    4 schema:citation sg:pub.10.1007/978-3-642-64981-3
    5 sg:pub.10.1007/bf00181315
    6 sg:pub.10.1007/bf01192006
    7 sg:pub.10.1007/bf01198118
    8 sg:pub.10.1007/bf01224646
    9 sg:pub.10.1007/bf01304825
    10 sg:pub.10.1007/bf01324726
    11 sg:pub.10.1007/bf01788537
    12 https://doi.org/10.1016/0012-365x(89)90317-8
    13 https://doi.org/10.1016/0097-3165(81)90002-9
    14 https://doi.org/10.1016/0097-3165(87)90068-9
    15 https://doi.org/10.1016/0097-3165(89)90029-0
    16 https://doi.org/10.1016/0097-3165(90)90073-6
    17 https://doi.org/10.2140/pjm.1965.15.319
    18 https://doi.org/10.2307/2372676
    19 https://doi.org/10.4153/cjm-1952-026-8
    20 https://doi.org/10.4153/cjm-1964-076-5
    21 https://doi.org/10.4153/cjm-1982-018-x
    22 schema:datePublished 1991-03
    23 schema:datePublishedReg 1991-03-01
    24 schema:description In this paper, we shall prove several non-existence results for divisible difference sets, using three approaches:character sum arguments similar to the work of Turyn [25] for ordinary difference sets,involution arguments andmultipliers in conjunction with results on ordinary difference sets. character sum arguments similar to the work of Turyn [25] for ordinary difference sets, involution arguments and multipliers in conjunction with results on ordinary difference sets. Among other results, we show that an abelian affine difference set of odd orders (s not a perfect square) inG can exist only if the Sylow 2-subgroup ofG is cyclic. We also obtain a non-existence result for non-cyclic (n, n, n, 1) relative difference sets of odd ordern.
    25 schema:genre research_article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree false
    28 schema:isPartOf N03f3a836e2ed4595a27fa2c6876afc77
    29 N1484655a3f37412dbcecb2fe494b69e5
    30 sg:journal.1136493
    31 schema:name Some non-existence results on divisible difference sets
    32 schema:pagination 1-8
    33 schema:productId N0d86f0aebea54e2bac2ac3658a7a0036
    34 N8893c849c21242dba7562b3904eb0480
    35 N96d47cf215ee4591869e9e201bba10a8
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048479502
    37 https://doi.org/10.1007/bf01375467
    38 schema:sdDatePublished 2019-04-11T13:34
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher Ndf4ab75c969542fdb38fe70f6e224d47
    41 schema:url http://link.springer.com/10.1007/BF01375467
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset articles
    44 rdf:type schema:ScholarlyArticle
    45 N03521baa196c41e68015963088ddf38d rdf:first sg:person.07454431554.81
    46 rdf:rest N8049d11e98904047bfeaf5d70dfe1093
    47 N03f3a836e2ed4595a27fa2c6876afc77 schema:issueNumber 1
    48 rdf:type schema:PublicationIssue
    49 N0d86f0aebea54e2bac2ac3658a7a0036 schema:name doi
    50 schema:value 10.1007/bf01375467
    51 rdf:type schema:PropertyValue
    52 N1484655a3f37412dbcecb2fe494b69e5 schema:volumeNumber 11
    53 rdf:type schema:PublicationVolume
    54 N6fe586d4db8a4dae8f3143619e3d4c8d rdf:first sg:person.012746300337.10
    55 rdf:rest rdf:nil
    56 N8049d11e98904047bfeaf5d70dfe1093 rdf:first sg:person.016273474670.91
    57 rdf:rest N6fe586d4db8a4dae8f3143619e3d4c8d
    58 N8893c849c21242dba7562b3904eb0480 schema:name dimensions_id
    59 schema:value pub.1048479502
    60 rdf:type schema:PropertyValue
    61 N96d47cf215ee4591869e9e201bba10a8 schema:name readcube_id
    62 schema:value e6f2843f753d4b909e1eb7f83b2015adca185b2544c7e1231fc3485362f27746
    63 rdf:type schema:PropertyValue
    64 Nb8076dcf20ee4c20a872999c2dd0e6ad rdf:first sg:person.010275733576.95
    65 rdf:rest N03521baa196c41e68015963088ddf38d
    66 Ndf4ab75c969542fdb38fe70f6e224d47 schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Medical and Health Sciences
    70 rdf:type schema:DefinedTerm
    71 anzsrc-for:1114 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Paediatrics and Reproductive Medicine
    73 rdf:type schema:DefinedTerm
    74 sg:journal.1136493 schema:issn 0209-9683
    75 1439-6912
    76 schema:name Combinatorica
    77 rdf:type schema:Periodical
    78 sg:person.010275733576.95 schema:affiliation https://www.grid.ac/institutes/grid.268333.f
    79 schema:familyName Arasu
    80 schema:givenName K. T.
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275733576.95
    82 rdf:type schema:Person
    83 sg:person.012746300337.10 schema:affiliation https://www.grid.ac/institutes/grid.8664.c
    84 schema:familyName Pott
    85 schema:givenName Alexander
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012746300337.10
    87 rdf:type schema:Person
    88 sg:person.016273474670.91 schema:affiliation https://www.grid.ac/institutes/grid.8664.c
    89 schema:familyName Jungnickel
    90 schema:givenName Dieter
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91
    92 rdf:type schema:Person
    93 sg:person.07454431554.81 schema:affiliation https://www.grid.ac/institutes/grid.267065.0
    94 schema:familyName Davis
    95 schema:givenName James
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07454431554.81
    97 rdf:type schema:Person
    98 sg:pub.10.1007/978-3-642-64981-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019501154
    99 https://doi.org/10.1007/978-3-642-64981-3
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/bf00181315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024366276
    102 https://doi.org/10.1007/bf00181315
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/bf01192006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003543369
    105 https://doi.org/10.1007/bf01192006
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/bf01198118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043897125
    108 https://doi.org/10.1007/bf01198118
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/bf01224646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043129954
    111 https://doi.org/10.1007/bf01224646
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/bf01304825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019212155
    114 https://doi.org/10.1007/bf01304825
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/bf01324726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038175951
    117 https://doi.org/10.1007/bf01324726
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/bf01788537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042280796
    120 https://doi.org/10.1007/bf01788537
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/0012-365x(89)90317-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033683174
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/0097-3165(81)90002-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051275978
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/0097-3165(87)90068-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001207970
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/0097-3165(89)90029-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020862947
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/0097-3165(90)90073-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003611586
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.2140/pjm.1965.15.319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069063507
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.2307/2372676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899313
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.4153/cjm-1952-026-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072263816
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.4153/cjm-1964-076-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072264615
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.4153/cjm-1982-018-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1072266851
    141 rdf:type schema:CreativeWork
    142 https://www.grid.ac/institutes/grid.267065.0 schema:alternateName University of Richmond
    143 schema:name Dept. of Mathematics and Computer Science, University of Richmond, 23173, Richmond, Virginia, USA
    144 rdf:type schema:Organization
    145 https://www.grid.ac/institutes/grid.268333.f schema:alternateName Wright State University
    146 schema:name Department of Mathematics and Statistics, Wright State University, 45435, Dayton, Ohio, USA
    147 rdf:type schema:Organization
    148 https://www.grid.ac/institutes/grid.8664.c schema:alternateName University of Giessen
    149 schema:name Mathematisches Institut, Justus-Liebig-Universität Giessen, Arndtstr. 2, D-6300, Giessen, Germany
    150 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...