Discontinuous freezing-out of local order View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-09

AUTHORS

K. -H. Höck, H. Thomas

ABSTRACT

A “soft” impurity in a host crystal undergoing a second-order displacive phase transition may induce a freezing-out of local order at temperatures above the bulk transition temperature [1]. We show that in MFA this local phase transition is of first order, i.e. the local order appears discontinuously, and the stability limit of the disordered phase against local ordering lies below the stability limit of the locally ordered phase, if the representation of the impurity coordinate contains a third-order invariant, but the space-group representation of the soft optical phonon does not. This situation occurs for example for anEg-type impurity coordinate coupling to a soft zone-edge or zone-corner phonon driving an antiferrodistortive transition. The theory is applied to the specific case of a Jahn-Teller impurity in a non-Jahn-Teller host crystal. More... »

PAGES

323-326

References to SciGraph publications

  • 1977-09. Statics and dynamics of “soft” impurities in a crystal in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • 1977. Theory of Jahn-Teller Transitions in ELECTRON-PHONON INTERACTIONS AND PHASE TRANSITIONS
  • 1978-12. Order-disorder structural phase transitions described by the three-states potts model in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01351511

    DOI

    http://dx.doi.org/10.1007/bf01351511

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1004244225


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretische Physik III, Ruhr-Universit\u00e4t Bochum, Universit\u00e4tsstra\u00dfe 150, Postfach 102841, D-4630, Bochum, Federal Republic of Germany", 
              "id": "http://www.grid.ac/institutes/grid.5570.7", 
              "name": [
                "Theoretische Physik III, Ruhr-Universit\u00e4t Bochum, Universit\u00e4tsstra\u00dfe 150, Postfach 102841, D-4630, Bochum, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "H\u00f6ck", 
            "givenName": "K. -H.", 
            "id": "sg:person.016536327105.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016536327105.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstra\u00dfe 82, CH-4056, Basel, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.6612.3", 
              "name": [
                "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstra\u00dfe 82, CH-4056, Basel, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thomas", 
            "givenName": "H.", 
            "id": "sg:person.0711120037.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4615-8921-1_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052719166", 
              "https://doi.org/10.1007/978-1-4615-8921-1_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01321093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022768527", 
              "https://doi.org/10.1007/bf01321093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01325538", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035164727", 
              "https://doi.org/10.1007/bf01325538"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1979-09", 
        "datePublishedReg": "1979-09-01", 
        "description": "A \u201csoft\u201d impurity in a host crystal undergoing a second-order displacive phase transition may induce a freezing-out of local order at temperatures above the bulk transition temperature [1]. We show that in MFA this local phase transition is of first order, i.e. the local order appears discontinuously, and the stability limit of the disordered phase against local ordering lies below the stability limit of the locally ordered phase, if the representation of the impurity coordinate contains a third-order invariant, but the space-group representation of the soft optical phonon does not. This situation occurs for example for anEg-type impurity coordinate coupling to a soft zone-edge or zone-corner phonon driving an antiferrodistortive transition. The theory is applied to the specific case of a Jahn-Teller impurity in a non-Jahn-Teller host crystal.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01351511", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1285002", 
            "issn": [
              "0722-3277", 
              "1431-584X"
            ], 
            "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "32"
          }
        ], 
        "keywords": [
          "Jahn-Teller impurity", 
          "space-group representations", 
          "third-order invariants", 
          "phase transition", 
          "local order", 
          "bulk transition temperature", 
          "stability limit", 
          "displacive phase transition", 
          "first order", 
          "host crystal", 
          "antiferrodistortive transition", 
          "second-order displacive phase transition", 
          "soft optical phonon", 
          "optical phonons", 
          "impurities", 
          "specific case", 
          "local phase transition", 
          "phonons", 
          "invariants", 
          "transition temperature", 
          "representation", 
          "transition", 
          "theory", 
          "order", 
          "limit", 
          "crystals", 
          "lies", 
          "temperature", 
          "phase", 
          "MFA", 
          "cases", 
          "situation", 
          "example"
        ], 
        "name": "Discontinuous freezing-out of local order", 
        "pagination": "323-326", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1004244225"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01351511"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01351511", 
          "https://app.dimensions.ai/details/publication/pub.1004244225"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_151.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01351511"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01351511'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01351511'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01351511'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01351511'


     

    This table displays all metadata directly associated to this object as RDF triples.

    112 TRIPLES      21 PREDICATES      61 URIs      50 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01351511 schema:about anzsrc-for:04
    2 anzsrc-for:0403
    3 schema:author Nd5d084b490344b4a9bff5b5c3b999850
    4 schema:citation sg:pub.10.1007/978-1-4615-8921-1_15
    5 sg:pub.10.1007/bf01321093
    6 sg:pub.10.1007/bf01325538
    7 schema:datePublished 1979-09
    8 schema:datePublishedReg 1979-09-01
    9 schema:description A “soft” impurity in a host crystal undergoing a second-order displacive phase transition may induce a freezing-out of local order at temperatures above the bulk transition temperature [1]. We show that in MFA this local phase transition is of first order, i.e. the local order appears discontinuously, and the stability limit of the disordered phase against local ordering lies below the stability limit of the locally ordered phase, if the representation of the impurity coordinate contains a third-order invariant, but the space-group representation of the soft optical phonon does not. This situation occurs for example for anEg-type impurity coordinate coupling to a soft zone-edge or zone-corner phonon driving an antiferrodistortive transition. The theory is applied to the specific case of a Jahn-Teller impurity in a non-Jahn-Teller host crystal.
    10 schema:genre article
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N336cc7b7c2f44d3e801d54d9470f821e
    13 N53b250b7fd954b0cba0a9cbb819f6f96
    14 sg:journal.1285002
    15 schema:keywords Jahn-Teller impurity
    16 MFA
    17 antiferrodistortive transition
    18 bulk transition temperature
    19 cases
    20 crystals
    21 displacive phase transition
    22 example
    23 first order
    24 host crystal
    25 impurities
    26 invariants
    27 lies
    28 limit
    29 local order
    30 local phase transition
    31 optical phonons
    32 order
    33 phase
    34 phase transition
    35 phonons
    36 representation
    37 second-order displacive phase transition
    38 situation
    39 soft optical phonon
    40 space-group representations
    41 specific case
    42 stability limit
    43 temperature
    44 theory
    45 third-order invariants
    46 transition
    47 transition temperature
    48 schema:name Discontinuous freezing-out of local order
    49 schema:pagination 323-326
    50 schema:productId N241217667ed74e16aed4748801447508
    51 N9e3440b9f36448e0ab4281b8e600ee6b
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004244225
    53 https://doi.org/10.1007/bf01351511
    54 schema:sdDatePublished 2022-10-01T06:27
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher N8a0eed232d6749eb86a045834b8195e9
    57 schema:url https://doi.org/10.1007/bf01351511
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N241217667ed74e16aed4748801447508 schema:name doi
    62 schema:value 10.1007/bf01351511
    63 rdf:type schema:PropertyValue
    64 N336cc7b7c2f44d3e801d54d9470f821e schema:volumeNumber 32
    65 rdf:type schema:PublicationVolume
    66 N53b250b7fd954b0cba0a9cbb819f6f96 schema:issueNumber 3
    67 rdf:type schema:PublicationIssue
    68 N8a0eed232d6749eb86a045834b8195e9 schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 N9e3440b9f36448e0ab4281b8e600ee6b schema:name dimensions_id
    71 schema:value pub.1004244225
    72 rdf:type schema:PropertyValue
    73 Na7af5c28be8046d9b874f83aea80fae8 rdf:first sg:person.0711120037.13
    74 rdf:rest rdf:nil
    75 Nd5d084b490344b4a9bff5b5c3b999850 rdf:first sg:person.016536327105.82
    76 rdf:rest Na7af5c28be8046d9b874f83aea80fae8
    77 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Earth Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Geology
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1285002 schema:issn 0722-3277
    84 1431-584X
    85 schema:name Zeitschrift für Physik B Condensed Matter
    86 schema:publisher Springer Nature
    87 rdf:type schema:Periodical
    88 sg:person.016536327105.82 schema:affiliation grid-institutes:grid.5570.7
    89 schema:familyName Höck
    90 schema:givenName K. -H.
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016536327105.82
    92 rdf:type schema:Person
    93 sg:person.0711120037.13 schema:affiliation grid-institutes:grid.6612.3
    94 schema:familyName Thomas
    95 schema:givenName H.
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13
    97 rdf:type schema:Person
    98 sg:pub.10.1007/978-1-4615-8921-1_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052719166
    99 https://doi.org/10.1007/978-1-4615-8921-1_15
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/bf01321093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022768527
    102 https://doi.org/10.1007/bf01321093
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/bf01325538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035164727
    105 https://doi.org/10.1007/bf01325538
    106 rdf:type schema:CreativeWork
    107 grid-institutes:grid.5570.7 schema:alternateName Theoretische Physik III, Ruhr-Universität Bochum, Universitätsstraße 150, Postfach 102841, D-4630, Bochum, Federal Republic of Germany
    108 schema:name Theoretische Physik III, Ruhr-Universität Bochum, Universitätsstraße 150, Postfach 102841, D-4630, Bochum, Federal Republic of Germany
    109 rdf:type schema:Organization
    110 grid-institutes:grid.6612.3 schema:alternateName Institut für Physik, Universität Basel, Klingelbergstraße 82, CH-4056, Basel, Switzerland
    111 schema:name Institut für Physik, Universität Basel, Klingelbergstraße 82, CH-4056, Basel, Switzerland
    112 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...