Low-viscosity lattice gases View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-06

AUTHORS

B. Dubrulle, U. Frisch, M. Hénon, J. -P. Rivet

ABSTRACT

A class of lattice gas models are studied which are variants of the FCHC model. The aim is to achieve the highest possible Reynolds coefficient (inverse dimensionless viscosity) for efficient simulations of the three-dimensional incompressible Navier-Stokes equations. The models include an arbitrary number of rest particles and violation of semi-detailed balance. Within the framework of the Boltzmann approximation exact expressions are obtained for the Reynolds coefficients. The minimization of the viscosity is done by solving a Hitchcock-type optimization problem for the fine tuning of the collision rules. When the number of rest particles exceeds one, there is a range of densities at which the viscosity takes negative values. Various optimal models with up to 26 bits per node have been implemented on a CRAY-2 and their true transport coefficients have been measured with good accuracy. Fairly large discrepancies with Boltzmann values are observed when semi-detailed balance is violated; in particular, no negative viscosity is obtained. Still, the best model has a Reynolds coefficient of 13.5, twice that of the best previously implemented model, and thus is about 16 times more efficient computationally. Suggestions are made for further improvements. It is proposed to use models with very high Reynolds coefficients for sub-grid-scale modeling of turbulent flows. More... »

PAGES

1187-1226

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01334747

DOI

http://dx.doi.org/10.1007/bf01334747

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029138993


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c9cole Normale Sup\u00e9rieure", 
          "id": "https://www.grid.ac/institutes/grid.5607.4", 
          "name": [
            "Observatoire Midi-Pyr\u00e9n\u00e9es, 31400, Toulouse, France", 
            "\u00c9cole Normale Sup\u00e9rieure, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dubrulle", 
        "givenName": "B.", 
        "id": "sg:person.016540315323.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016540315323.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "CNRS, Observatoire de Nice, 06003, Nice Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frisch", 
        "givenName": "U.", 
        "id": "sg:person.011615073661.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "CNRS, Observatoire de Nice, 06003, Nice Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00e9non", 
        "givenName": "M.", 
        "id": "sg:person.016454454535.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016454454535.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Physique Statistique", 
          "id": "https://www.grid.ac/institutes/grid.463722.6", 
          "name": [
            "CNRS, Observatoire de Nice, 06003, Nice Cedex, France", 
            "Laboratoire de Physique Statistique, 75231, Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rivet", 
        "givenName": "J. -P.", 
        "id": "sg:person.015623764411.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015623764411.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01044449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011606484", 
          "https://doi.org/10.1007/bf01044449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01021083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018064274", 
          "https://doi.org/10.1007/bf01021083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1666248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057744321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-8949/1985/t9/023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058991940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.40.2850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060480109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.40.2850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060480109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.1691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.1691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/2/4/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064229113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/7/3/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064231305"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-06", 
    "datePublishedReg": "1990-06-01", 
    "description": "A class of lattice gas models are studied which are variants of the FCHC model. The aim is to achieve the highest possible Reynolds coefficient (inverse dimensionless viscosity) for efficient simulations of the three-dimensional incompressible Navier-Stokes equations. The models include an arbitrary number of rest particles and violation of semi-detailed balance. Within the framework of the Boltzmann approximation exact expressions are obtained for the Reynolds coefficients. The minimization of the viscosity is done by solving a Hitchcock-type optimization problem for the fine tuning of the collision rules. When the number of rest particles exceeds one, there is a range of densities at which the viscosity takes negative values. Various optimal models with up to 26 bits per node have been implemented on a CRAY-2 and their true transport coefficients have been measured with good accuracy. Fairly large discrepancies with Boltzmann values are observed when semi-detailed balance is violated; in particular, no negative viscosity is obtained. Still, the best model has a Reynolds coefficient of 13.5, twice that of the best previously implemented model, and thus is about 16 times more efficient computationally. Suggestions are made for further improvements. It is proposed to use models with very high Reynolds coefficients for sub-grid-scale modeling of turbulent flows.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01334747", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "59"
      }
    ], 
    "name": "Low-viscosity lattice gases", 
    "pagination": "1187-1226", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8ad04ad009553103a264738b7ea23af4a67cd7ab8996732bab7c14ce70e9b455"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01334747"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029138993"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01334747", 
      "https://app.dimensions.ai/details/publication/pub.1029138993"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000495.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01334747"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01334747'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01334747'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01334747'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01334747'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01334747 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nb87247e4389c4b71a8edeba58e0709c5
4 schema:citation sg:pub.10.1007/bf01021083
5 sg:pub.10.1007/bf01044449
6 https://doi.org/10.1063/1.1666248
7 https://doi.org/10.1088/0031-8949/1985/t9/023
8 https://doi.org/10.1103/physreva.40.2850
9 https://doi.org/10.1103/physrevlett.56.1505
10 https://doi.org/10.1103/physrevlett.56.1691
11 https://doi.org/10.1103/physrevlett.61.2332
12 https://doi.org/10.1209/0295-5075/2/4/006
13 https://doi.org/10.1209/0295-5075/7/3/008
14 schema:datePublished 1990-06
15 schema:datePublishedReg 1990-06-01
16 schema:description A class of lattice gas models are studied which are variants of the FCHC model. The aim is to achieve the highest possible Reynolds coefficient (inverse dimensionless viscosity) for efficient simulations of the three-dimensional incompressible Navier-Stokes equations. The models include an arbitrary number of rest particles and violation of semi-detailed balance. Within the framework of the Boltzmann approximation exact expressions are obtained for the Reynolds coefficients. The minimization of the viscosity is done by solving a Hitchcock-type optimization problem for the fine tuning of the collision rules. When the number of rest particles exceeds one, there is a range of densities at which the viscosity takes negative values. Various optimal models with up to 26 bits per node have been implemented on a CRAY-2 and their true transport coefficients have been measured with good accuracy. Fairly large discrepancies with Boltzmann values are observed when semi-detailed balance is violated; in particular, no negative viscosity is obtained. Still, the best model has a Reynolds coefficient of 13.5, twice that of the best previously implemented model, and thus is about 16 times more efficient computationally. Suggestions are made for further improvements. It is proposed to use models with very high Reynolds coefficients for sub-grid-scale modeling of turbulent flows.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N0a6cd6a7c33a43f38bb1232ef045c34e
21 Nacee0fe0767e4cf69bee205858678261
22 sg:journal.1040979
23 schema:name Low-viscosity lattice gases
24 schema:pagination 1187-1226
25 schema:productId N54a7fb4e3f6042d6ad5f573cc1e8db4e
26 Nde97c3f78391473aadc0771e2d6daa1f
27 Nf68b800f85594f55899b2812f17c334a
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029138993
29 https://doi.org/10.1007/bf01334747
30 schema:sdDatePublished 2019-04-10T13:11
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Nda1c7178f2df4618af4f3bf48d51018b
33 schema:url http://link.springer.com/10.1007/BF01334747
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N0a6cd6a7c33a43f38bb1232ef045c34e schema:issueNumber 5-6
38 rdf:type schema:PublicationIssue
39 N45f1eae1c4044630b422d57a01d965a1 rdf:first sg:person.011615073661.47
40 rdf:rest Nc93f67bd2c484fd5a0ae0fbf63cefecb
41 N54a7fb4e3f6042d6ad5f573cc1e8db4e schema:name readcube_id
42 schema:value 8ad04ad009553103a264738b7ea23af4a67cd7ab8996732bab7c14ce70e9b455
43 rdf:type schema:PropertyValue
44 N96d1946229e641adb66d59d81ed713d0 rdf:first sg:person.015623764411.66
45 rdf:rest rdf:nil
46 Nacee0fe0767e4cf69bee205858678261 schema:volumeNumber 59
47 rdf:type schema:PublicationVolume
48 Nb87247e4389c4b71a8edeba58e0709c5 rdf:first sg:person.016540315323.75
49 rdf:rest N45f1eae1c4044630b422d57a01d965a1
50 Nc93f67bd2c484fd5a0ae0fbf63cefecb rdf:first sg:person.016454454535.81
51 rdf:rest N96d1946229e641adb66d59d81ed713d0
52 Nda1c7178f2df4618af4f3bf48d51018b schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Nde97c3f78391473aadc0771e2d6daa1f schema:name dimensions_id
55 schema:value pub.1029138993
56 rdf:type schema:PropertyValue
57 Nf68b800f85594f55899b2812f17c334a schema:name doi
58 schema:value 10.1007/bf01334747
59 rdf:type schema:PropertyValue
60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
61 schema:name Mathematical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
64 schema:name Applied Mathematics
65 rdf:type schema:DefinedTerm
66 sg:journal.1040979 schema:issn 0022-4715
67 1572-9613
68 schema:name Journal of Statistical Physics
69 rdf:type schema:Periodical
70 sg:person.011615073661.47 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
71 schema:familyName Frisch
72 schema:givenName U.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47
74 rdf:type schema:Person
75 sg:person.015623764411.66 schema:affiliation https://www.grid.ac/institutes/grid.463722.6
76 schema:familyName Rivet
77 schema:givenName J. -P.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015623764411.66
79 rdf:type schema:Person
80 sg:person.016454454535.81 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
81 schema:familyName Hénon
82 schema:givenName M.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016454454535.81
84 rdf:type schema:Person
85 sg:person.016540315323.75 schema:affiliation https://www.grid.ac/institutes/grid.5607.4
86 schema:familyName Dubrulle
87 schema:givenName B.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016540315323.75
89 rdf:type schema:Person
90 sg:pub.10.1007/bf01021083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018064274
91 https://doi.org/10.1007/bf01021083
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf01044449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011606484
94 https://doi.org/10.1007/bf01044449
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1063/1.1666248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057744321
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1088/0031-8949/1985/t9/023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058991940
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physreva.40.2850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060480109
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physrevlett.56.1505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792961
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevlett.56.1691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793022
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physrevlett.61.2332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797898
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1209/0295-5075/2/4/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064229113
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1209/0295-5075/7/3/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064231305
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
113 schema:name CNRS, Observatoire de Nice, 06003, Nice Cedex, France
114 rdf:type schema:Organization
115 https://www.grid.ac/institutes/grid.463722.6 schema:alternateName Laboratoire de Physique Statistique
116 schema:name CNRS, Observatoire de Nice, 06003, Nice Cedex, France
117 Laboratoire de Physique Statistique, 75231, Paris Cedex 05, France
118 rdf:type schema:Organization
119 https://www.grid.ac/institutes/grid.5607.4 schema:alternateName École Normale Supérieure
120 schema:name Observatoire Midi-Pyrénées, 31400, Toulouse, France
121 École Normale Supérieure, 75005, Paris, France
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...