Low-viscosity lattice gases View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-06

AUTHORS

B. Dubrulle, U. Frisch, M. Hénon, J. -P. Rivet

ABSTRACT

A class of lattice gas models are studied which are variants of the FCHC model. The aim is to achieve the highest possible Reynolds coefficient (inverse dimensionless viscosity) for efficient simulations of the three-dimensional incompressible Navier-Stokes equations. The models include an arbitrary number of rest particles and violation of semi-detailed balance. Within the framework of the Boltzmann approximation exact expressions are obtained for the Reynolds coefficients. The minimization of the viscosity is done by solving a Hitchcock-type optimization problem for the fine tuning of the collision rules. When the number of rest particles exceeds one, there is a range of densities at which the viscosity takes negative values. Various optimal models with up to 26 bits per node have been implemented on a CRAY-2 and their true transport coefficients have been measured with good accuracy. Fairly large discrepancies with Boltzmann values are observed when semi-detailed balance is violated; in particular, no negative viscosity is obtained. Still, the best model has a Reynolds coefficient of 13.5, twice that of the best previously implemented model, and thus is about 16 times more efficient computationally. Suggestions are made for further improvements. It is proposed to use models with very high Reynolds coefficients for sub-grid-scale modeling of turbulent flows. More... »

PAGES

1187-1226

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01334747

DOI

http://dx.doi.org/10.1007/bf01334747

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029138993


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c9cole Normale Sup\u00e9rieure", 
          "id": "https://www.grid.ac/institutes/grid.5607.4", 
          "name": [
            "Observatoire Midi-Pyr\u00e9n\u00e9es, 31400, Toulouse, France", 
            "\u00c9cole Normale Sup\u00e9rieure, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dubrulle", 
        "givenName": "B.", 
        "id": "sg:person.016540315323.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016540315323.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "CNRS, Observatoire de Nice, 06003, Nice Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frisch", 
        "givenName": "U.", 
        "id": "sg:person.011615073661.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "CNRS, Observatoire de Nice, 06003, Nice Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00e9non", 
        "givenName": "M.", 
        "id": "sg:person.016454454535.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016454454535.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Physique Statistique", 
          "id": "https://www.grid.ac/institutes/grid.463722.6", 
          "name": [
            "CNRS, Observatoire de Nice, 06003, Nice Cedex, France", 
            "Laboratoire de Physique Statistique, 75231, Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rivet", 
        "givenName": "J. -P.", 
        "id": "sg:person.015623764411.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015623764411.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01044449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011606484", 
          "https://doi.org/10.1007/bf01044449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01021083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018064274", 
          "https://doi.org/10.1007/bf01021083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1666248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057744321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-8949/1985/t9/023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058991940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.40.2850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060480109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.40.2850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060480109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.1691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.1691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/2/4/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064229113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/7/3/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064231305"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-06", 
    "datePublishedReg": "1990-06-01", 
    "description": "A class of lattice gas models are studied which are variants of the FCHC model. The aim is to achieve the highest possible Reynolds coefficient (inverse dimensionless viscosity) for efficient simulations of the three-dimensional incompressible Navier-Stokes equations. The models include an arbitrary number of rest particles and violation of semi-detailed balance. Within the framework of the Boltzmann approximation exact expressions are obtained for the Reynolds coefficients. The minimization of the viscosity is done by solving a Hitchcock-type optimization problem for the fine tuning of the collision rules. When the number of rest particles exceeds one, there is a range of densities at which the viscosity takes negative values. Various optimal models with up to 26 bits per node have been implemented on a CRAY-2 and their true transport coefficients have been measured with good accuracy. Fairly large discrepancies with Boltzmann values are observed when semi-detailed balance is violated; in particular, no negative viscosity is obtained. Still, the best model has a Reynolds coefficient of 13.5, twice that of the best previously implemented model, and thus is about 16 times more efficient computationally. Suggestions are made for further improvements. It is proposed to use models with very high Reynolds coefficients for sub-grid-scale modeling of turbulent flows.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01334747", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "59"
      }
    ], 
    "name": "Low-viscosity lattice gases", 
    "pagination": "1187-1226", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8ad04ad009553103a264738b7ea23af4a67cd7ab8996732bab7c14ce70e9b455"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01334747"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029138993"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01334747", 
      "https://app.dimensions.ai/details/publication/pub.1029138993"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000495.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01334747"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01334747'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01334747'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01334747'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01334747'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01334747 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N566c9c4615d24df6888abab3fe84669b
4 schema:citation sg:pub.10.1007/bf01021083
5 sg:pub.10.1007/bf01044449
6 https://doi.org/10.1063/1.1666248
7 https://doi.org/10.1088/0031-8949/1985/t9/023
8 https://doi.org/10.1103/physreva.40.2850
9 https://doi.org/10.1103/physrevlett.56.1505
10 https://doi.org/10.1103/physrevlett.56.1691
11 https://doi.org/10.1103/physrevlett.61.2332
12 https://doi.org/10.1209/0295-5075/2/4/006
13 https://doi.org/10.1209/0295-5075/7/3/008
14 schema:datePublished 1990-06
15 schema:datePublishedReg 1990-06-01
16 schema:description A class of lattice gas models are studied which are variants of the FCHC model. The aim is to achieve the highest possible Reynolds coefficient (inverse dimensionless viscosity) for efficient simulations of the three-dimensional incompressible Navier-Stokes equations. The models include an arbitrary number of rest particles and violation of semi-detailed balance. Within the framework of the Boltzmann approximation exact expressions are obtained for the Reynolds coefficients. The minimization of the viscosity is done by solving a Hitchcock-type optimization problem for the fine tuning of the collision rules. When the number of rest particles exceeds one, there is a range of densities at which the viscosity takes negative values. Various optimal models with up to 26 bits per node have been implemented on a CRAY-2 and their true transport coefficients have been measured with good accuracy. Fairly large discrepancies with Boltzmann values are observed when semi-detailed balance is violated; in particular, no negative viscosity is obtained. Still, the best model has a Reynolds coefficient of 13.5, twice that of the best previously implemented model, and thus is about 16 times more efficient computationally. Suggestions are made for further improvements. It is proposed to use models with very high Reynolds coefficients for sub-grid-scale modeling of turbulent flows.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N0c82ea93f94645e390d6b063f9b39949
21 N8be325c0de9049fba3652ba775d4884e
22 sg:journal.1040979
23 schema:name Low-viscosity lattice gases
24 schema:pagination 1187-1226
25 schema:productId N6a778f23636b4bc6af3052b04ff57393
26 Naee8ff329d48467c877baa5b7693b32e
27 Nbd9baabf711848f8a05c65a63d5b8645
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029138993
29 https://doi.org/10.1007/bf01334747
30 schema:sdDatePublished 2019-04-10T13:11
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Nd11b295faee74ed5a68eb903101501fd
33 schema:url http://link.springer.com/10.1007/BF01334747
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N0c82ea93f94645e390d6b063f9b39949 schema:issueNumber 5-6
38 rdf:type schema:PublicationIssue
39 N120522be92894e7ca7f966af50301b68 rdf:first sg:person.015623764411.66
40 rdf:rest rdf:nil
41 N20563aef31b847e0bba6ca0500dc86c0 rdf:first sg:person.016454454535.81
42 rdf:rest N120522be92894e7ca7f966af50301b68
43 N566c9c4615d24df6888abab3fe84669b rdf:first sg:person.016540315323.75
44 rdf:rest Na4958268ac6a4fbcb633681ed81f6dca
45 N6a778f23636b4bc6af3052b04ff57393 schema:name dimensions_id
46 schema:value pub.1029138993
47 rdf:type schema:PropertyValue
48 N8be325c0de9049fba3652ba775d4884e schema:volumeNumber 59
49 rdf:type schema:PublicationVolume
50 Na4958268ac6a4fbcb633681ed81f6dca rdf:first sg:person.011615073661.47
51 rdf:rest N20563aef31b847e0bba6ca0500dc86c0
52 Naee8ff329d48467c877baa5b7693b32e schema:name readcube_id
53 schema:value 8ad04ad009553103a264738b7ea23af4a67cd7ab8996732bab7c14ce70e9b455
54 rdf:type schema:PropertyValue
55 Nbd9baabf711848f8a05c65a63d5b8645 schema:name doi
56 schema:value 10.1007/bf01334747
57 rdf:type schema:PropertyValue
58 Nd11b295faee74ed5a68eb903101501fd schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
61 schema:name Mathematical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
64 schema:name Applied Mathematics
65 rdf:type schema:DefinedTerm
66 sg:journal.1040979 schema:issn 0022-4715
67 1572-9613
68 schema:name Journal of Statistical Physics
69 rdf:type schema:Periodical
70 sg:person.011615073661.47 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
71 schema:familyName Frisch
72 schema:givenName U.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47
74 rdf:type schema:Person
75 sg:person.015623764411.66 schema:affiliation https://www.grid.ac/institutes/grid.463722.6
76 schema:familyName Rivet
77 schema:givenName J. -P.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015623764411.66
79 rdf:type schema:Person
80 sg:person.016454454535.81 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
81 schema:familyName Hénon
82 schema:givenName M.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016454454535.81
84 rdf:type schema:Person
85 sg:person.016540315323.75 schema:affiliation https://www.grid.ac/institutes/grid.5607.4
86 schema:familyName Dubrulle
87 schema:givenName B.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016540315323.75
89 rdf:type schema:Person
90 sg:pub.10.1007/bf01021083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018064274
91 https://doi.org/10.1007/bf01021083
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf01044449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011606484
94 https://doi.org/10.1007/bf01044449
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1063/1.1666248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057744321
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1088/0031-8949/1985/t9/023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058991940
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physreva.40.2850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060480109
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physrevlett.56.1505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792961
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevlett.56.1691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793022
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physrevlett.61.2332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797898
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1209/0295-5075/2/4/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064229113
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1209/0295-5075/7/3/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064231305
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
113 schema:name CNRS, Observatoire de Nice, 06003, Nice Cedex, France
114 rdf:type schema:Organization
115 https://www.grid.ac/institutes/grid.463722.6 schema:alternateName Laboratoire de Physique Statistique
116 schema:name CNRS, Observatoire de Nice, 06003, Nice Cedex, France
117 Laboratoire de Physique Statistique, 75231, Paris Cedex 05, France
118 rdf:type schema:Organization
119 https://www.grid.ac/institutes/grid.5607.4 schema:alternateName École Normale Supérieure
120 schema:name Observatoire Midi-Pyrénées, 31400, Toulouse, France
121 École Normale Supérieure, 75005, Paris, France
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...