Equidistribution and Brownian motion on the Sierpiński gasket View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-06

AUTHORS

Peter J. Grabner, Robert F. Tichy

ABSTRACT

We introduce several concepts of discrepancy for sequences on the Sierpiński gasket. Furthermore a law of iterated logarithm for the discrepancy of trajectories of Brownian motion is proved. The main tools for this result are regularity properties of the heat kernel on the Sierpiński gasket. Some of the results can be generalized to arbitrary nested fractals in the sense of T. Lindstrøm. More... »

PAGES

147-164

References to SciGraph publications

  • 1992-03. On a spectral analysis for the Sierpinski gasket in POTENTIAL ANALYSIS
  • 1988-11. Brownian motion on the Sierpinski gasket in PROBABILITY THEORY AND RELATED FIELDS
  • 1971-06. Das Wienersche Maß einer gewissen Menge von Vektorfunktionen in MONATSHEFTE FÜR MATHEMATIK
  • 1989. Ramanujan’s Notebooks, Part II in NONE
  • 1991-02. On eigenvalue problems for the random walks on the Sierpinski pre-gaskets in JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS
  • 1989-12. A uniform law of the iterated logarithm for brownian motion on compact Riemannian manifolds in MATHEMATISCHE ZEITSCHRIFT
  • 1989-06. A harmonic calculus on the Sierpinski spaces in JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS
  • 1990-02. An inequality for differences of distribution functions in ARCHIV DER MATHEMATIK
  • 1960-12. Über C - Gleichwerteilung in ANNALI DI MATEMATICA PURA ED APPLICATA (1923 -)
  • 1990. Sample path properties of diffusion processes on compact manifolds in NUMBER-THEORETIC ANALYSIS
  • 1993. Statistical Mechanics and Fractals in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01332824

    DOI

    http://dx.doi.org/10.1007/bf01332824

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012442889


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Mathematik, Technische Universit\u00e4t Graz, Steyrergasse 30, 8010, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.410413.3", 
              "name": [
                "Institut f\u00fcr Mathematik, Technische Universit\u00e4t Graz, Steyrergasse 30, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grabner", 
            "givenName": "Peter J.", 
            "id": "sg:person.012034162405.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012034162405.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Mathematik, Technische Universit\u00e4t Graz, Steyrergasse 30, 8010, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.410413.3", 
              "name": [
                "Institut f\u00fcr Mathematik, Technische Universit\u00e4t Graz, Steyrergasse 30, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tichy", 
            "givenName": "Robert F.", 
            "id": "sg:person.015312676677.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bfb0074238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034015327", 
              "https://doi.org/10.1007/bfb0074238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01198113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047767379", 
              "https://doi.org/10.1007/bf01198113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03167882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011824072", 
              "https://doi.org/10.1007/bf03167882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01215154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039250458", 
              "https://doi.org/10.1007/bf01215154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03167188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024516176", 
              "https://doi.org/10.1007/bf03167188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0096977", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012853257", 
              "https://doi.org/10.1007/bfb0096977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-4530-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052766209", 
              "https://doi.org/10.1007/978-1-4612-4530-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01299098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008480862", 
              "https://doi.org/10.1007/bf01299098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02414057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030395414", 
              "https://doi.org/10.1007/bf02414057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00249784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039574586", 
              "https://doi.org/10.1007/bf00249784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00318785", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023570974", 
              "https://doi.org/10.1007/bf00318785"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998-06", 
        "datePublishedReg": "1998-06-01", 
        "description": "We introduce several concepts of discrepancy for sequences on the Sierpi\u0144ski gasket. Furthermore a law of iterated logarithm for the discrepancy of trajectories of Brownian motion is proved. The main tools for this result are regularity properties of the heat kernel on the Sierpi\u0144ski gasket. Some of the results can be generalized to arbitrary nested fractals in the sense of T. Lindstr\u00f8m.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01332824", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1049395", 
            "issn": [
              "0026-9255", 
              "1436-5081"
            ], 
            "name": "Monatshefte f\u00fcr Mathematik", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "125"
          }
        ], 
        "keywords": [
          "discrepancy", 
          "results", 
          "Sierpi\u0144ski gasket", 
          "Brownian motion", 
          "regularity properties", 
          "tool", 
          "heat kernel", 
          "concept of discrepancy", 
          "main tool", 
          "motion", 
          "logarithm", 
          "sequence", 
          "Lindstr\u00f8m", 
          "equidistribution", 
          "fractals", 
          "concept", 
          "trajectories", 
          "kernel", 
          "sense", 
          "gasket", 
          "law", 
          "properties", 
          "discrepancy of trajectories"
        ], 
        "name": "Equidistribution and Brownian motion on the Sierpi\u0144ski gasket", 
        "pagination": "147-164", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012442889"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01332824"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01332824", 
          "https://app.dimensions.ai/details/publication/pub.1012442889"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_291.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01332824"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01332824'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01332824'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01332824'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01332824'


     

    This table displays all metadata directly associated to this object as RDF triples.

    132 TRIPLES      22 PREDICATES      60 URIs      41 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01332824 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N3debbc38f5e24429bdb7f28716c12865
    4 schema:citation sg:pub.10.1007/978-1-4612-4530-8
    5 sg:pub.10.1007/bf00249784
    6 sg:pub.10.1007/bf00318785
    7 sg:pub.10.1007/bf01198113
    8 sg:pub.10.1007/bf01215154
    9 sg:pub.10.1007/bf01299098
    10 sg:pub.10.1007/bf02414057
    11 sg:pub.10.1007/bf03167188
    12 sg:pub.10.1007/bf03167882
    13 sg:pub.10.1007/bfb0074238
    14 sg:pub.10.1007/bfb0096977
    15 schema:datePublished 1998-06
    16 schema:datePublishedReg 1998-06-01
    17 schema:description We introduce several concepts of discrepancy for sequences on the Sierpiński gasket. Furthermore a law of iterated logarithm for the discrepancy of trajectories of Brownian motion is proved. The main tools for this result are regularity properties of the heat kernel on the Sierpiński gasket. Some of the results can be generalized to arbitrary nested fractals in the sense of T. Lindstrøm.
    18 schema:genre article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N6f0830058edd4207a556da0321572730
    22 N89c93774531d40fbb4f75f0de4723c3d
    23 sg:journal.1049395
    24 schema:keywords Brownian motion
    25 Lindstrøm
    26 Sierpiński gasket
    27 concept
    28 concept of discrepancy
    29 discrepancy
    30 discrepancy of trajectories
    31 equidistribution
    32 fractals
    33 gasket
    34 heat kernel
    35 kernel
    36 law
    37 logarithm
    38 main tool
    39 motion
    40 properties
    41 regularity properties
    42 results
    43 sense
    44 sequence
    45 tool
    46 trajectories
    47 schema:name Equidistribution and Brownian motion on the Sierpiński gasket
    48 schema:pagination 147-164
    49 schema:productId N2efa5e4facc94481ac1864df580f1f00
    50 Ncf0a21073ddc4355997658da50e3fcfc
    51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012442889
    52 https://doi.org/10.1007/bf01332824
    53 schema:sdDatePublished 2021-12-01T19:10
    54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    55 schema:sdPublisher Nb176fb556fad4f9aa75754823599c5d4
    56 schema:url https://doi.org/10.1007/bf01332824
    57 sgo:license sg:explorer/license/
    58 sgo:sdDataset articles
    59 rdf:type schema:ScholarlyArticle
    60 N2efa5e4facc94481ac1864df580f1f00 schema:name doi
    61 schema:value 10.1007/bf01332824
    62 rdf:type schema:PropertyValue
    63 N3027bdadd05447b695fe86506b2f0ff7 rdf:first sg:person.015312676677.43
    64 rdf:rest rdf:nil
    65 N3debbc38f5e24429bdb7f28716c12865 rdf:first sg:person.012034162405.58
    66 rdf:rest N3027bdadd05447b695fe86506b2f0ff7
    67 N6f0830058edd4207a556da0321572730 schema:issueNumber 2
    68 rdf:type schema:PublicationIssue
    69 N89c93774531d40fbb4f75f0de4723c3d schema:volumeNumber 125
    70 rdf:type schema:PublicationVolume
    71 Nb176fb556fad4f9aa75754823599c5d4 schema:name Springer Nature - SN SciGraph project
    72 rdf:type schema:Organization
    73 Ncf0a21073ddc4355997658da50e3fcfc schema:name dimensions_id
    74 schema:value pub.1012442889
    75 rdf:type schema:PropertyValue
    76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Mathematical Sciences
    78 rdf:type schema:DefinedTerm
    79 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Pure Mathematics
    81 rdf:type schema:DefinedTerm
    82 sg:journal.1049395 schema:issn 0026-9255
    83 1436-5081
    84 schema:name Monatshefte für Mathematik
    85 schema:publisher Springer Nature
    86 rdf:type schema:Periodical
    87 sg:person.012034162405.58 schema:affiliation grid-institutes:grid.410413.3
    88 schema:familyName Grabner
    89 schema:givenName Peter J.
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012034162405.58
    91 rdf:type schema:Person
    92 sg:person.015312676677.43 schema:affiliation grid-institutes:grid.410413.3
    93 schema:familyName Tichy
    94 schema:givenName Robert F.
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43
    96 rdf:type schema:Person
    97 sg:pub.10.1007/978-1-4612-4530-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052766209
    98 https://doi.org/10.1007/978-1-4612-4530-8
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/bf00249784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039574586
    101 https://doi.org/10.1007/bf00249784
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/bf00318785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023570974
    104 https://doi.org/10.1007/bf00318785
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/bf01198113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047767379
    107 https://doi.org/10.1007/bf01198113
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/bf01215154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039250458
    110 https://doi.org/10.1007/bf01215154
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/bf01299098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008480862
    113 https://doi.org/10.1007/bf01299098
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/bf02414057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030395414
    116 https://doi.org/10.1007/bf02414057
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/bf03167188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024516176
    119 https://doi.org/10.1007/bf03167188
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/bf03167882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011824072
    122 https://doi.org/10.1007/bf03167882
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/bfb0074238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034015327
    125 https://doi.org/10.1007/bfb0074238
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/bfb0096977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012853257
    128 https://doi.org/10.1007/bfb0096977
    129 rdf:type schema:CreativeWork
    130 grid-institutes:grid.410413.3 schema:alternateName Institut für Mathematik, Technische Universität Graz, Steyrergasse 30, 8010, Graz, Austria
    131 schema:name Institut für Mathematik, Technische Universität Graz, Steyrergasse 30, 8010, Graz, Austria
    132 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...