Second-order matching in the restricted three-body problem (smallμ) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1974-07

AUTHORS

J. V. Breakwell, L. M. Perko

ABSTRACT

Elliptic orbits around the large primary are matched to hyperbolas, osculating at closest approach, around the small primary of the circular restricted three-body problem. The distance of closest approach to the small primary is assumed to be of the same order as the mass-ratio μ of small to large primary. The dependence of the hyperbola on initial conditions for the elliptic orbit is carried to second order jointly in μ and in the variations of the initial conditions, which are three-dimensional rather than two-dimensional. More... »

PAGES

437-450

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01329325

DOI

http://dx.doi.org/10.1007/bf01329325

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045873427


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dept. of Astronautics and Aeronautics, Stanford University, Stanford, Calif., USA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Dept. of Astronautics and Aeronautics, Stanford University, Stanford, Calif., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Breakwell", 
        "givenName": "J. V.", 
        "id": "sg:person.014463552077.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014463552077.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Mathematics, Northern Arizona University, Flagstaff, Ariz., USA", 
          "id": "http://www.grid.ac/institutes/grid.261120.6", 
          "name": [
            "Dept. of Mathematics, Northern Arizona University, Flagstaff, Ariz., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perko", 
        "givenName": "L. M.", 
        "id": "sg:person.015460176441.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015460176441.18"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1974-07", 
    "datePublishedReg": "1974-07-01", 
    "description": "Elliptic orbits around the large primary are matched to hyperbolas, osculating at closest approach, around the small primary of the circular restricted three-body problem. The distance of closest approach to the small primary is assumed to be of the same order as the mass-ratio \u03bc of small to large primary. The dependence of the hyperbola on initial conditions for the elliptic orbit is carried to second order jointly in \u03bc and in the variations of the initial conditions, which are three-dimensional rather than two-dimensional.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01329325", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136436", 
        "issn": [
          "0008-8714", 
          "0923-2958"
        ], 
        "name": "Celestial Mechanics and Dynamical Astronomy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "large primaries", 
      "primary", 
      "smaller primary", 
      "conditions", 
      "approach", 
      "problem", 
      "order", 
      "variation", 
      "orbit", 
      "same order", 
      "hyperbola", 
      "distance", 
      "matching", 
      "circular", 
      "dependence", 
      "three-body problem", 
      "elliptic orbits", 
      "initial conditions", 
      "second order", 
      "second-order matching", 
      "closest approach"
    ], 
    "name": "Second-order matching in the restricted three-body problem (small\u03bc)", 
    "pagination": "437-450", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045873427"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01329325"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01329325", 
      "https://app.dimensions.ai/details/publication/pub.1045873427"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T17:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_122.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01329325"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01329325'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01329325'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01329325'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01329325'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      21 PREDICATES      47 URIs      39 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01329325 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N19ecb280973f41929caedcbb48ec0faf
4 schema:datePublished 1974-07
5 schema:datePublishedReg 1974-07-01
6 schema:description Elliptic orbits around the large primary are matched to hyperbolas, osculating at closest approach, around the small primary of the circular restricted three-body problem. The distance of closest approach to the small primary is assumed to be of the same order as the mass-ratio μ of small to large primary. The dependence of the hyperbola on initial conditions for the elliptic orbit is carried to second order jointly in μ and in the variations of the initial conditions, which are three-dimensional rather than two-dimensional.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N1a26d356e25b47409982c0781db95dea
11 Na0f15f45887144f8a356f802220e96c0
12 sg:journal.1136436
13 schema:keywords approach
14 circular
15 closest approach
16 conditions
17 dependence
18 distance
19 elliptic orbits
20 hyperbola
21 initial conditions
22 large primaries
23 matching
24 orbit
25 order
26 primary
27 problem
28 same order
29 second order
30 second-order matching
31 smaller primary
32 three-body problem
33 variation
34 schema:name Second-order matching in the restricted three-body problem (smallμ)
35 schema:pagination 437-450
36 schema:productId N4b876468d9d04be3a395ddf0b9f4fe2e
37 Nee20937a32454b9ca3002e1e0fb63a22
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045873427
39 https://doi.org/10.1007/bf01329325
40 schema:sdDatePublished 2021-11-01T17:54
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N77c1911c823a4d419b6862d381a5b593
43 schema:url https://doi.org/10.1007/bf01329325
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N19ecb280973f41929caedcbb48ec0faf rdf:first sg:person.014463552077.01
48 rdf:rest Na0abe81ce8454c7c95fa4cfae964e85a
49 N1a26d356e25b47409982c0781db95dea schema:volumeNumber 9
50 rdf:type schema:PublicationVolume
51 N4b876468d9d04be3a395ddf0b9f4fe2e schema:name doi
52 schema:value 10.1007/bf01329325
53 rdf:type schema:PropertyValue
54 N77c1911c823a4d419b6862d381a5b593 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Na0abe81ce8454c7c95fa4cfae964e85a rdf:first sg:person.015460176441.18
57 rdf:rest rdf:nil
58 Na0f15f45887144f8a356f802220e96c0 schema:issueNumber 4
59 rdf:type schema:PublicationIssue
60 Nee20937a32454b9ca3002e1e0fb63a22 schema:name dimensions_id
61 schema:value pub.1045873427
62 rdf:type schema:PropertyValue
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
67 schema:name Pure Mathematics
68 rdf:type schema:DefinedTerm
69 sg:journal.1136436 schema:issn 0008-8714
70 0923-2958
71 schema:name Celestial Mechanics and Dynamical Astronomy
72 schema:publisher Springer Nature
73 rdf:type schema:Periodical
74 sg:person.014463552077.01 schema:affiliation grid-institutes:grid.168010.e
75 schema:familyName Breakwell
76 schema:givenName J. V.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014463552077.01
78 rdf:type schema:Person
79 sg:person.015460176441.18 schema:affiliation grid-institutes:grid.261120.6
80 schema:familyName Perko
81 schema:givenName L. M.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015460176441.18
83 rdf:type schema:Person
84 grid-institutes:grid.168010.e schema:alternateName Dept. of Astronautics and Aeronautics, Stanford University, Stanford, Calif., USA
85 schema:name Dept. of Astronautics and Aeronautics, Stanford University, Stanford, Calif., USA
86 rdf:type schema:Organization
87 grid-institutes:grid.261120.6 schema:alternateName Dept. of Mathematics, Northern Arizona University, Flagstaff, Ariz., USA
88 schema:name Dept. of Mathematics, Northern Arizona University, Flagstaff, Ariz., USA
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...