Planar ferromagnets: Low-velocity kink dynamics near to the easy plane and static solitary spin structures bifurcating from the azimuthal kink View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1984-09

AUTHORS

E. Magyari, H. Thomas, R. Weber

ABSTRACT

Ferromagnetic spin chains with planar single ion anisotropy, exchange anisotropy and with an external fieldb applied in the easy plane are considered in classical continuum approximation. It is pointed out that in the static case the sine-Gordon approximation is only accidentally exact: it breaks down in the neighborhood of the easy plane already for infinitesimal kink velocities, unlessb→0. It is also shown that at certain valuesbn,n=0, 1, 2, 3, ... of the applied field there bifurcate from the static in-plane kink (“azimuthal kink”) other static out-of-plane kink solutions. The azimuthal kink is linearly stable below the critical strengthb0 of the applied field. For increasingb, there occurs at each of the bifurcation fieldsb1 More... »

PAGES

189-197

References to SciGraph publications

  • 1983-06. Dynamics of the soliton instability in the easy-plane ferromagnetic chain in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • 1981-09. Elementary excitations in easy-plane Heisenberg ferromagnets in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01329011

    DOI

    http://dx.doi.org/10.1007/bf01329011

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046242229


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Physik der Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.6612.3", 
              "name": [
                "Institut f\u00fcr Physik der Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Magyari", 
            "givenName": "E.", 
            "id": "sg:person.010411043343.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010411043343.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Physik der Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.6612.3", 
              "name": [
                "Institut f\u00fcr Physik der Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thomas", 
            "givenName": "H.", 
            "id": "sg:person.0711120037.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Physik der Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.6612.3", 
              "name": [
                "Institut f\u00fcr Physik der Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Weber", 
            "givenName": "R.", 
            "id": "sg:person.014371035671.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371035671.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01445291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020467670", 
              "https://doi.org/10.1007/bf01445291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01422028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002128019", 
              "https://doi.org/10.1007/bf01422028"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1984-09", 
        "datePublishedReg": "1984-09-01", 
        "description": "Ferromagnetic spin chains with planar single ion anisotropy, exchange anisotropy and with an external fieldb applied in the easy plane are considered in classical continuum approximation. It is pointed out that in the static case the sine-Gordon approximation is only accidentally exact: it breaks down in the neighborhood of the easy plane already for infinitesimal kink velocities, unlessb\u21920. It is also shown that at certain valuesbn,n=0, 1, 2, 3, ... of the applied field there bifurcate from the static in-plane kink (\u201cazimuthal kink\u201d) other static out-of-plane kink solutions. The azimuthal kink is linearly stable below the critical strengthb0 of the applied field. For increasingb, there occurs at each of the bifurcation fieldsb1
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01329011'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01329011'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01329011'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01329011'


     

    This table displays all metadata directly associated to this object as RDF triples.

    123 TRIPLES      21 PREDICATES      71 URIs      61 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01329011 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author Nffdbe809f3a745cb8819bb4dd6d9846c
    4 schema:citation sg:pub.10.1007/bf01422028
    5 sg:pub.10.1007/bf01445291
    6 schema:datePublished 1984-09
    7 schema:datePublishedReg 1984-09-01
    8 schema:description Ferromagnetic spin chains with planar single ion anisotropy, exchange anisotropy and with an external fieldb applied in the easy plane are considered in classical continuum approximation. It is pointed out that in the static case the sine-Gordon approximation is only accidentally exact: it breaks down in the neighborhood of the easy plane already for infinitesimal kink velocities, unlessb→0. It is also shown that at certain valuesbn,n=0, 1, 2, 3, ... of the applied field there bifurcate from the static in-plane kink (“azimuthal kink”) other static out-of-plane kink solutions. The azimuthal kink is linearly stable below the critical strengthb0 of the applied field. For increasingb, there occurs at each of the bifurcation fieldsb1<b2<b3... an instability with respect to an additional mode. In the undamped system the instabilities atb2k,k=0, 1, 2, ... are associated with the recently discovered “soft-velocity change” mechanism of the critical slowing-down, whereas atb2k+1, soft localized dynamic modes occur. If phenomenological spin damping is included, soft relaxation modes occur in the neighborhood of all the bifurcation fields.
    9 schema:genre article
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N17c1d947d72d4c16972bed20019a79fb
    12 Nfd2e7a060c4d48ae9ed32ce82f76b1a5
    13 sg:journal.1285002
    14 schema:keywords B2
    15 B3
    16 additional modes
    17 anisotropy
    18 approximation
    19 cases
    20 chain
    21 changes
    22 classical continuum approximation
    23 continuum approximation
    24 critical slowing
    25 damping
    26 dynamic mode
    27 dynamics
    28 easy plane
    29 exchange anisotropy
    30 ferromagnetic spin chain
    31 field
    32 fieldB
    33 instability
    34 ion anisotropy
    35 kink dynamics
    36 kink solutions
    37 kink velocity
    38 kinks
    39 mechanism
    40 mode
    41 neighborhood
    42 plane
    43 relaxation modes
    44 respect
    45 single-ion anisotropy
    46 slowing
    47 soft relaxation mode
    48 solution
    49 spin chain
    50 spin damping
    51 spin structure
    52 static
    53 static case
    54 structure
    55 system
    56 undamped system
    57 velocity
    58 schema:name Planar ferromagnets: Low-velocity kink dynamics near to the easy plane and static solitary spin structures bifurcating from the azimuthal kink
    59 schema:pagination 189-197
    60 schema:productId N2b4d77918239430b97fd0bd0c41d3cb8
    61 Nc6be185dac264bcab2778370ab71e9a3
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046242229
    63 https://doi.org/10.1007/bf01329011
    64 schema:sdDatePublished 2022-10-01T06:27
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher N5188dff4e81d4930b5cb7ced8b4b5f8a
    67 schema:url https://doi.org/10.1007/bf01329011
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N17c1d947d72d4c16972bed20019a79fb schema:issueNumber 3
    72 rdf:type schema:PublicationIssue
    73 N2b4d77918239430b97fd0bd0c41d3cb8 schema:name dimensions_id
    74 schema:value pub.1046242229
    75 rdf:type schema:PropertyValue
    76 N5188dff4e81d4930b5cb7ced8b4b5f8a schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 N7b67a4dfa290444cb2ca518cae5ddda1 rdf:first sg:person.014371035671.39
    79 rdf:rest rdf:nil
    80 Nc6be185dac264bcab2778370ab71e9a3 schema:name doi
    81 schema:value 10.1007/bf01329011
    82 rdf:type schema:PropertyValue
    83 Ndf475a5f6bee45328d9e554a0ff613dc rdf:first sg:person.0711120037.13
    84 rdf:rest N7b67a4dfa290444cb2ca518cae5ddda1
    85 Nfd2e7a060c4d48ae9ed32ce82f76b1a5 schema:volumeNumber 55
    86 rdf:type schema:PublicationVolume
    87 Nffdbe809f3a745cb8819bb4dd6d9846c rdf:first sg:person.010411043343.13
    88 rdf:rest Ndf475a5f6bee45328d9e554a0ff613dc
    89 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Physical Sciences
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Other Physical Sciences
    94 rdf:type schema:DefinedTerm
    95 sg:journal.1285002 schema:issn 0722-3277
    96 1431-584X
    97 schema:name Zeitschrift für Physik B Condensed Matter
    98 schema:publisher Springer Nature
    99 rdf:type schema:Periodical
    100 sg:person.010411043343.13 schema:affiliation grid-institutes:grid.6612.3
    101 schema:familyName Magyari
    102 schema:givenName E.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010411043343.13
    104 rdf:type schema:Person
    105 sg:person.014371035671.39 schema:affiliation grid-institutes:grid.6612.3
    106 schema:familyName Weber
    107 schema:givenName R.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371035671.39
    109 rdf:type schema:Person
    110 sg:person.0711120037.13 schema:affiliation grid-institutes:grid.6612.3
    111 schema:familyName Thomas
    112 schema:givenName H.
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13
    114 rdf:type schema:Person
    115 sg:pub.10.1007/bf01422028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002128019
    116 https://doi.org/10.1007/bf01422028
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/bf01445291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020467670
    119 https://doi.org/10.1007/bf01445291
    120 rdf:type schema:CreativeWork
    121 grid-institutes:grid.6612.3 schema:alternateName Institut für Physik der Universität Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
    122 schema:name Institut für Physik der Universität Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
    123 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...