Ontology type: schema:ScholarlyArticle
1994-10
AUTHORSRichard S. Morrison, Fumio Yamaguchi, Hideyuki Saya, Janet M. Bruner, Alan M. Yahanda, Lawrence A. Donehower, Mitchel Berger
ABSTRACTMalignant astrocytomas are highly invasive, vascular neoplasms that comprise the majority of nervous system tumors in humans. A strong association has previously been made between malignancy in human astrocytic tumors and increased expression of certain fibroblast growth factor (FGF) family members, including basic and acidic FGF. The influence of endogenous basic FGF on glioblastoma cell growthin vitro was evaluated using basic FGF-specific antisense oligonucleotides. These studies indicated that human glioblastoma cell growthin vitro, can be inhibited by suppressing basic FGF expression. Human astrocytomas also exhibited changes in FGF receptor (FGFR) expression during the course of their progression from a benign to a malignant phenotype. FGFR2 (bek) expression was abundant in normal white matter and in all low grade astrocytomas, but was not observed in glioblastomas. Conversely, FGFR1 (flg) expression was absent or barely detectable in normal white matter, but was significantly elevated in glioblastomas. Glioblastomas also expressed an alternatively spliced form of FGFR1 containing two immunoglobulin-like disulfide loops (FGFR1β), whereas normal human adult and fetal brain expressed a form of the receptor containing three immunoglobulin-like disulfide loops (FGFR1α). Intermediate grades of astrocytic tumors exhibited a gradual loss of FGFR2 and a shift in expression from FGFR1α to FGFR1β as they progressed from a benigh to a malignant phenotype. The underlying cytogenetic changes that contribute to these alterations are not entirely understood, but abnormalities in the p53 tumor suppressor gene may influence expression of bFGF as well as the FGFR. These results suggest that alterations in FGFR signal transduction pathways may play a critical role in the malignant progression of astrocytic tumors. More... »
PAGES207-216
http://scigraph.springernature.com/pub.10.1007/bf01328955
DOIhttp://dx.doi.org/10.1007/bf01328955
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1036217120
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/7964981
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Oncology and Carcinogenesis",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Astrocytes",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Astrocytoma",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Brain",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Brain Neoplasms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cell Division",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Fibroblast Growth Factor 2",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Gene Expression Regulation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Genes, p53",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "RNA, Messenger",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Receptors, Fibroblast Growth Factor",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Tumor Biology, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA",
"id": "http://www.grid.ac/institutes/grid.240145.6",
"name": [
"Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA",
"Department of Tumor Biology, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA"
],
"type": "Organization"
},
"familyName": "Morrison",
"givenName": "Richard S.",
"id": "sg:person.0661637364.66",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661637364.66"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA",
"id": "http://www.grid.ac/institutes/grid.240145.6",
"name": [
"Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA"
],
"type": "Organization"
},
"familyName": "Yamaguchi",
"givenName": "Fumio",
"id": "sg:person.01051127103.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051127103.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Neuro Oncology, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA",
"id": "http://www.grid.ac/institutes/grid.240145.6",
"name": [
"Department of Tumor Biology, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA",
"Department of Neuro Oncology, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA"
],
"type": "Organization"
},
"familyName": "Saya",
"givenName": "Hideyuki",
"id": "sg:person.0704677621.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704677621.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Neuropathology, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA",
"id": "http://www.grid.ac/institutes/grid.240145.6",
"name": [
"Department of Neuropathology, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA"
],
"type": "Organization"
},
"familyName": "Bruner",
"givenName": "Janet M.",
"id": "sg:person.013375073077.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013375073077.30"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA",
"id": "http://www.grid.ac/institutes/grid.240145.6",
"name": [
"Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA"
],
"type": "Organization"
},
"familyName": "Yahanda",
"givenName": "Alan M.",
"id": "sg:person.01022125244.84",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022125244.84"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Division of Molecular Virology, Baylor College of Medicine, 77030, Houston, Texas, USA",
"id": "http://www.grid.ac/institutes/grid.39382.33",
"name": [
"Division of Molecular Virology, Baylor College of Medicine, 77030, Houston, Texas, USA"
],
"type": "Organization"
},
"familyName": "Donehower",
"givenName": "Lawrence A.",
"id": "sg:person.012452075437.76",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012452075437.76"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Neurosurgery, University of Washington, 98195, Seattle, WA, USA",
"id": "http://www.grid.ac/institutes/grid.34477.33",
"name": [
"Department of Neurosurgery, University of Washington, 98195, Seattle, WA, USA"
],
"type": "Organization"
},
"familyName": "Berger",
"givenName": "Mitchel",
"id": "sg:person.011344234707.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011344234707.05"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/342705a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041126170",
"https://doi.org/10.1038/342705a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/356215a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027559823",
"https://doi.org/10.1038/356215a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02623692",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001243520",
"https://doi.org/10.1007/bf02623692"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01213098",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014979899",
"https://doi.org/10.1007/bf01213098"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00554791",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017564104",
"https://doi.org/10.1007/bf00554791"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/355846a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024842732",
"https://doi.org/10.1038/355846a0"
],
"type": "CreativeWork"
}
],
"datePublished": "1994-10",
"datePublishedReg": "1994-10-01",
"description": "Malignant astrocytomas are highly invasive, vascular neoplasms that comprise the majority of nervous system tumors in humans. A strong association has previously been made between malignancy in human astrocytic tumors and increased expression of certain fibroblast growth factor (FGF) family members, including basic and acidic FGF. The influence of endogenous basic FGF on glioblastoma cell growthin vitro was evaluated using basic FGF-specific antisense oligonucleotides. These studies indicated that human glioblastoma cell growthin vitro, can be inhibited by suppressing basic FGF expression. Human astrocytomas also exhibited changes in FGF receptor (FGFR) expression during the course of their progression from a benign to a malignant phenotype. FGFR2 (bek) expression was abundant in normal white matter and in all low grade astrocytomas, but was not observed in glioblastomas. Conversely, FGFR1 (flg) expression was absent or barely detectable in normal white matter, but was significantly elevated in glioblastomas. Glioblastomas also expressed an alternatively spliced form of FGFR1 containing two immunoglobulin-like disulfide loops (FGFR1\u03b2), whereas normal human adult and fetal brain expressed a form of the receptor containing three immunoglobulin-like disulfide loops (FGFR1\u03b1). Intermediate grades of astrocytic tumors exhibited a gradual loss of FGFR2 and a shift in expression from FGFR1\u03b1 to FGFR1\u03b2 as they progressed from a benigh to a malignant phenotype. The underlying cytogenetic changes that contribute to these alterations are not entirely understood, but abnormalities in the p53 tumor suppressor gene may influence expression of bFGF as well as the FGFR. These results suggest that alterations in FGFR signal transduction pathways may play a critical role in the malignant progression of astrocytic tumors.",
"genre": "article",
"id": "sg:pub.10.1007/bf01328955",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1094205",
"issn": [
"0167-594X",
"1573-7373"
],
"name": "Journal of Neuro-Oncology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "18"
}
],
"keywords": [
"normal white matter",
"astrocytic tumors",
"white matter",
"malignant phenotype",
"human astrocytomas",
"nervous system tumors",
"growth factor family members",
"low-grade astrocytomas",
"growth factor receptor I",
"basic fibroblast growth factor",
"basic FGF expression",
"expression of bFGF",
"immunoglobulin-like disulfide loops",
"endogenous basic FGF",
"human astrocytic tumors",
"p53 tumor suppressor gene",
"FGF receptor expression",
"fibroblast growth factor",
"normal human adults",
"malignant astrocytomas",
"system tumors",
"vascular neoplasm",
"receptor expression",
"grade astrocytomas",
"fetal brain",
"receptor I",
"factor family members",
"malignant progression",
"fibroblast growth factor family members",
"FGFR1 expression",
"astrocytomas",
"tumors",
"cytogenetic changes",
"tumor suppressor gene",
"basic FGF",
"intermediate grade",
"growth factor",
"strong association",
"acidic FGF",
"FGFR2 expression",
"human adults",
"FGF expression",
"glioblastoma",
"growthin vitro",
"suppressor gene",
"progression",
"family members",
"signal transduction pathways",
"expression",
"alterations",
"disulfide loop",
"gradual loss",
"critical role",
"transduction pathways",
"phenotype",
"FGF",
"malignancy",
"neoplasms",
"spliced forms",
"benigh",
"abnormalities",
"brain",
"receptors",
"Benign",
"bFGF",
"adults",
"FGFR1",
"vitro",
"FGFR2",
"FGFR",
"association",
"growthin",
"grade",
"humans",
"changes",
"majority",
"pathway",
"antisense",
"course",
"factors",
"study",
"role",
"genes",
"loss",
"members",
"form",
"results",
"growth",
"loop",
"matter",
"influence",
"shift"
],
"name": "Basic fibroblast growth factor and fibroblast growth factor receptor I are implicated in the growth of human astrocytomas",
"pagination": "207-216",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1036217120"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf01328955"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"7964981"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf01328955",
"https://app.dimensions.ai/details/publication/pub.1036217120"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:41",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_226.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf01328955"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01328955'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01328955'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01328955'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01328955'
This table displays all metadata directly associated to this object as RDF triples.
278 TRIPLES
22 PREDICATES
136 URIs
122 LITERALS
18 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf01328955 | schema:about | N06a8748318c54a3b82c137cee222b7b8 |
2 | ″ | ″ | N0cfeda07b5af4f948d2d4e3596c5160c |
3 | ″ | ″ | N3a79332b5d254b89b8ef1efe9872cc72 |
4 | ″ | ″ | N5f433dc3049d4a8d84245af976c6e5a9 |
5 | ″ | ″ | N636151d841174b62a9f6d7c2fbcbec3c |
6 | ″ | ″ | N97af18baa7fd4c8b8a2430d753cd52be |
7 | ″ | ″ | Na00f7a88c1964541a0c03768b129267c |
8 | ″ | ″ | Nac2bc8de985f4fcab0b8b56b4871b6b0 |
9 | ″ | ″ | Nd143931a90144c7186de6d1608aba1b8 |
10 | ″ | ″ | Nd48e52277c874cd48dfda77e5e954870 |
11 | ″ | ″ | Nfdd5e1ad9896422f9b15b4f7ad9ab656 |
12 | ″ | ″ | anzsrc-for:11 |
13 | ″ | ″ | anzsrc-for:1112 |
14 | ″ | schema:author | Neb62b81c0d194b26b63419a36d52c30e |
15 | ″ | schema:citation | sg:pub.10.1007/bf00554791 |
16 | ″ | ″ | sg:pub.10.1007/bf01213098 |
17 | ″ | ″ | sg:pub.10.1007/bf02623692 |
18 | ″ | ″ | sg:pub.10.1038/342705a0 |
19 | ″ | ″ | sg:pub.10.1038/355846a0 |
20 | ″ | ″ | sg:pub.10.1038/356215a0 |
21 | ″ | schema:datePublished | 1994-10 |
22 | ″ | schema:datePublishedReg | 1994-10-01 |
23 | ″ | schema:description | Malignant astrocytomas are highly invasive, vascular neoplasms that comprise the majority of nervous system tumors in humans. A strong association has previously been made between malignancy in human astrocytic tumors and increased expression of certain fibroblast growth factor (FGF) family members, including basic and acidic FGF. The influence of endogenous basic FGF on glioblastoma cell growthin vitro was evaluated using basic FGF-specific antisense oligonucleotides. These studies indicated that human glioblastoma cell growthin vitro, can be inhibited by suppressing basic FGF expression. Human astrocytomas also exhibited changes in FGF receptor (FGFR) expression during the course of their progression from a benign to a malignant phenotype. FGFR2 (bek) expression was abundant in normal white matter and in all low grade astrocytomas, but was not observed in glioblastomas. Conversely, FGFR1 (flg) expression was absent or barely detectable in normal white matter, but was significantly elevated in glioblastomas. Glioblastomas also expressed an alternatively spliced form of FGFR1 containing two immunoglobulin-like disulfide loops (FGFR1β), whereas normal human adult and fetal brain expressed a form of the receptor containing three immunoglobulin-like disulfide loops (FGFR1α). Intermediate grades of astrocytic tumors exhibited a gradual loss of FGFR2 and a shift in expression from FGFR1α to FGFR1β as they progressed from a benigh to a malignant phenotype. The underlying cytogenetic changes that contribute to these alterations are not entirely understood, but abnormalities in the p53 tumor suppressor gene may influence expression of bFGF as well as the FGFR. These results suggest that alterations in FGFR signal transduction pathways may play a critical role in the malignant progression of astrocytic tumors. |
24 | ″ | schema:genre | article |
25 | ″ | schema:inLanguage | en |
26 | ″ | schema:isAccessibleForFree | false |
27 | ″ | schema:isPartOf | N20b73f9b4ec449beb679407b4301566f |
28 | ″ | ″ | N3be6b190d07e407291d2d9e87928bbac |
29 | ″ | ″ | sg:journal.1094205 |
30 | ″ | schema:keywords | Benign |
31 | ″ | ″ | FGF |
32 | ″ | ″ | FGF expression |
33 | ″ | ″ | FGF receptor expression |
34 | ″ | ″ | FGFR |
35 | ″ | ″ | FGFR1 |
36 | ″ | ″ | FGFR1 expression |
37 | ″ | ″ | FGFR2 |
38 | ″ | ″ | FGFR2 expression |
39 | ″ | ″ | abnormalities |
40 | ″ | ″ | acidic FGF |
41 | ″ | ″ | adults |
42 | ″ | ″ | alterations |
43 | ″ | ″ | antisense |
44 | ″ | ″ | association |
45 | ″ | ″ | astrocytic tumors |
46 | ″ | ″ | astrocytomas |
47 | ″ | ″ | bFGF |
48 | ″ | ″ | basic FGF |
49 | ″ | ″ | basic FGF expression |
50 | ″ | ″ | basic fibroblast growth factor |
51 | ″ | ″ | benigh |
52 | ″ | ″ | brain |
53 | ″ | ″ | changes |
54 | ″ | ″ | course |
55 | ″ | ″ | critical role |
56 | ″ | ″ | cytogenetic changes |
57 | ″ | ″ | disulfide loop |
58 | ″ | ″ | endogenous basic FGF |
59 | ″ | ″ | expression |
60 | ″ | ″ | expression of bFGF |
61 | ″ | ″ | factor family members |
62 | ″ | ″ | factors |
63 | ″ | ″ | family members |
64 | ″ | ″ | fetal brain |
65 | ″ | ″ | fibroblast growth factor |
66 | ″ | ″ | fibroblast growth factor family members |
67 | ″ | ″ | form |
68 | ″ | ″ | genes |
69 | ″ | ″ | glioblastoma |
70 | ″ | ″ | grade |
71 | ″ | ″ | grade astrocytomas |
72 | ″ | ″ | gradual loss |
73 | ″ | ″ | growth |
74 | ″ | ″ | growth factor |
75 | ″ | ″ | growth factor family members |
76 | ″ | ″ | growth factor receptor I |
77 | ″ | ″ | growthin |
78 | ″ | ″ | growthin vitro |
79 | ″ | ″ | human adults |
80 | ″ | ″ | human astrocytic tumors |
81 | ″ | ″ | human astrocytomas |
82 | ″ | ″ | humans |
83 | ″ | ″ | immunoglobulin-like disulfide loops |
84 | ″ | ″ | influence |
85 | ″ | ″ | intermediate grade |
86 | ″ | ″ | loop |
87 | ″ | ″ | loss |
88 | ″ | ″ | low-grade astrocytomas |
89 | ″ | ″ | majority |
90 | ″ | ″ | malignancy |
91 | ″ | ″ | malignant astrocytomas |
92 | ″ | ″ | malignant phenotype |
93 | ″ | ″ | malignant progression |
94 | ″ | ″ | matter |
95 | ″ | ″ | members |
96 | ″ | ″ | neoplasms |
97 | ″ | ″ | nervous system tumors |
98 | ″ | ″ | normal human adults |
99 | ″ | ″ | normal white matter |
100 | ″ | ″ | p53 tumor suppressor gene |
101 | ″ | ″ | pathway |
102 | ″ | ″ | phenotype |
103 | ″ | ″ | progression |
104 | ″ | ″ | receptor I |
105 | ″ | ″ | receptor expression |
106 | ″ | ″ | receptors |
107 | ″ | ″ | results |
108 | ″ | ″ | role |
109 | ″ | ″ | shift |
110 | ″ | ″ | signal transduction pathways |
111 | ″ | ″ | spliced forms |
112 | ″ | ″ | strong association |
113 | ″ | ″ | study |
114 | ″ | ″ | suppressor gene |
115 | ″ | ″ | system tumors |
116 | ″ | ″ | transduction pathways |
117 | ″ | ″ | tumor suppressor gene |
118 | ″ | ″ | tumors |
119 | ″ | ″ | vascular neoplasm |
120 | ″ | ″ | vitro |
121 | ″ | ″ | white matter |
122 | ″ | schema:name | Basic fibroblast growth factor and fibroblast growth factor receptor I are implicated in the growth of human astrocytomas |
123 | ″ | schema:pagination | 207-216 |
124 | ″ | schema:productId | N5e82ccdbbc3b47c484790de6ee198ec6 |
125 | ″ | ″ | N8daa01e7ba9f4404b1ec68f0c85c5073 |
126 | ″ | ″ | Ne2b9aefd0341468db8d47f7dec0e86ab |
127 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1036217120 |
128 | ″ | ″ | https://doi.org/10.1007/bf01328955 |
129 | ″ | schema:sdDatePublished | 2022-05-10T09:41 |
130 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
131 | ″ | schema:sdPublisher | N1eb66ec0853c4ca2abc1eb25f6a3292a |
132 | ″ | schema:url | https://doi.org/10.1007/bf01328955 |
133 | ″ | sgo:license | sg:explorer/license/ |
134 | ″ | sgo:sdDataset | articles |
135 | ″ | rdf:type | schema:ScholarlyArticle |
136 | N06a8748318c54a3b82c137cee222b7b8 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
137 | ″ | schema:name | Humans |
138 | ″ | rdf:type | schema:DefinedTerm |
139 | N0cfeda07b5af4f948d2d4e3596c5160c | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
140 | ″ | schema:name | Gene Expression Regulation |
141 | ″ | rdf:type | schema:DefinedTerm |
142 | N1eb66ec0853c4ca2abc1eb25f6a3292a | schema:name | Springer Nature - SN SciGraph project |
143 | ″ | rdf:type | schema:Organization |
144 | N20b73f9b4ec449beb679407b4301566f | schema:issueNumber | 3 |
145 | ″ | rdf:type | schema:PublicationIssue |
146 | N3a79332b5d254b89b8ef1efe9872cc72 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
147 | ″ | schema:name | RNA, Messenger |
148 | ″ | rdf:type | schema:DefinedTerm |
149 | N3be6b190d07e407291d2d9e87928bbac | schema:volumeNumber | 18 |
150 | ″ | rdf:type | schema:PublicationVolume |
151 | N3d91f73d98eb4a2aa13b60f663984858 | rdf:first | sg:person.013375073077.30 |
152 | ″ | rdf:rest | N7b6fa760fa3d4e70a65c66b318766f49 |
153 | N5e82ccdbbc3b47c484790de6ee198ec6 | schema:name | dimensions_id |
154 | ″ | schema:value | pub.1036217120 |
155 | ″ | rdf:type | schema:PropertyValue |
156 | N5f433dc3049d4a8d84245af976c6e5a9 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
157 | ″ | schema:name | Receptors, Fibroblast Growth Factor |
158 | ″ | rdf:type | schema:DefinedTerm |
159 | N61e62ff51d574b918df924018f6dcad9 | rdf:first | sg:person.0704677621.52 |
160 | ″ | rdf:rest | N3d91f73d98eb4a2aa13b60f663984858 |
161 | N636151d841174b62a9f6d7c2fbcbec3c | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
162 | ″ | schema:name | Cell Division |
163 | ″ | rdf:type | schema:DefinedTerm |
164 | N67d4267897ff4acebfa3d8ddec4961eb | rdf:first | sg:person.012452075437.76 |
165 | ″ | rdf:rest | Ne331b0325e7f42778e486aa0ff13fed5 |
166 | N7b6fa760fa3d4e70a65c66b318766f49 | rdf:first | sg:person.01022125244.84 |
167 | ″ | rdf:rest | N67d4267897ff4acebfa3d8ddec4961eb |
168 | N8daa01e7ba9f4404b1ec68f0c85c5073 | schema:name | pubmed_id |
169 | ″ | schema:value | 7964981 |
170 | ″ | rdf:type | schema:PropertyValue |
171 | N97af18baa7fd4c8b8a2430d753cd52be | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
172 | ″ | schema:name | Brain Neoplasms |
173 | ″ | rdf:type | schema:DefinedTerm |
174 | Na00f7a88c1964541a0c03768b129267c | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
175 | ″ | schema:name | Brain |
176 | ″ | rdf:type | schema:DefinedTerm |
177 | Nac2bc8de985f4fcab0b8b56b4871b6b0 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
178 | ″ | schema:name | Genes, p53 |
179 | ″ | rdf:type | schema:DefinedTerm |
180 | Nc0824609c243449bb4e72be15f526207 | rdf:first | sg:person.01051127103.09 |
181 | ″ | rdf:rest | N61e62ff51d574b918df924018f6dcad9 |
182 | Nd143931a90144c7186de6d1608aba1b8 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
183 | ″ | schema:name | Fibroblast Growth Factor 2 |
184 | ″ | rdf:type | schema:DefinedTerm |
185 | Nd48e52277c874cd48dfda77e5e954870 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
186 | ″ | schema:name | Astrocytoma |
187 | ″ | rdf:type | schema:DefinedTerm |
188 | Ne2b9aefd0341468db8d47f7dec0e86ab | schema:name | doi |
189 | ″ | schema:value | 10.1007/bf01328955 |
190 | ″ | rdf:type | schema:PropertyValue |
191 | Ne331b0325e7f42778e486aa0ff13fed5 | rdf:first | sg:person.011344234707.05 |
192 | ″ | rdf:rest | rdf:nil |
193 | Neb62b81c0d194b26b63419a36d52c30e | rdf:first | sg:person.0661637364.66 |
194 | ″ | rdf:rest | Nc0824609c243449bb4e72be15f526207 |
195 | Nfdd5e1ad9896422f9b15b4f7ad9ab656 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
196 | ″ | schema:name | Astrocytes |
197 | ″ | rdf:type | schema:DefinedTerm |
198 | anzsrc-for:11 | schema:inDefinedTermSet | anzsrc-for: |
199 | ″ | schema:name | Medical and Health Sciences |
200 | ″ | rdf:type | schema:DefinedTerm |
201 | anzsrc-for:1112 | schema:inDefinedTermSet | anzsrc-for: |
202 | ″ | schema:name | Oncology and Carcinogenesis |
203 | ″ | rdf:type | schema:DefinedTerm |
204 | sg:journal.1094205 | schema:issn | 0167-594X |
205 | ″ | ″ | 1573-7373 |
206 | ″ | schema:name | Journal of Neuro-Oncology |
207 | ″ | schema:publisher | Springer Nature |
208 | ″ | rdf:type | schema:Periodical |
209 | sg:person.01022125244.84 | schema:affiliation | grid-institutes:grid.240145.6 |
210 | ″ | schema:familyName | Yahanda |
211 | ″ | schema:givenName | Alan M. |
212 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022125244.84 |
213 | ″ | rdf:type | schema:Person |
214 | sg:person.01051127103.09 | schema:affiliation | grid-institutes:grid.240145.6 |
215 | ″ | schema:familyName | Yamaguchi |
216 | ″ | schema:givenName | Fumio |
217 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051127103.09 |
218 | ″ | rdf:type | schema:Person |
219 | sg:person.011344234707.05 | schema:affiliation | grid-institutes:grid.34477.33 |
220 | ″ | schema:familyName | Berger |
221 | ″ | schema:givenName | Mitchel |
222 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011344234707.05 |
223 | ″ | rdf:type | schema:Person |
224 | sg:person.012452075437.76 | schema:affiliation | grid-institutes:grid.39382.33 |
225 | ″ | schema:familyName | Donehower |
226 | ″ | schema:givenName | Lawrence A. |
227 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012452075437.76 |
228 | ″ | rdf:type | schema:Person |
229 | sg:person.013375073077.30 | schema:affiliation | grid-institutes:grid.240145.6 |
230 | ″ | schema:familyName | Bruner |
231 | ″ | schema:givenName | Janet M. |
232 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013375073077.30 |
233 | ″ | rdf:type | schema:Person |
234 | sg:person.0661637364.66 | schema:affiliation | grid-institutes:grid.240145.6 |
235 | ″ | schema:familyName | Morrison |
236 | ″ | schema:givenName | Richard S. |
237 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661637364.66 |
238 | ″ | rdf:type | schema:Person |
239 | sg:person.0704677621.52 | schema:affiliation | grid-institutes:grid.240145.6 |
240 | ″ | schema:familyName | Saya |
241 | ″ | schema:givenName | Hideyuki |
242 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704677621.52 |
243 | ″ | rdf:type | schema:Person |
244 | sg:pub.10.1007/bf00554791 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017564104 |
245 | ″ | ″ | https://doi.org/10.1007/bf00554791 |
246 | ″ | rdf:type | schema:CreativeWork |
247 | sg:pub.10.1007/bf01213098 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1014979899 |
248 | ″ | ″ | https://doi.org/10.1007/bf01213098 |
249 | ″ | rdf:type | schema:CreativeWork |
250 | sg:pub.10.1007/bf02623692 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1001243520 |
251 | ″ | ″ | https://doi.org/10.1007/bf02623692 |
252 | ″ | rdf:type | schema:CreativeWork |
253 | sg:pub.10.1038/342705a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041126170 |
254 | ″ | ″ | https://doi.org/10.1038/342705a0 |
255 | ″ | rdf:type | schema:CreativeWork |
256 | sg:pub.10.1038/355846a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1024842732 |
257 | ″ | ″ | https://doi.org/10.1038/355846a0 |
258 | ″ | rdf:type | schema:CreativeWork |
259 | sg:pub.10.1038/356215a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027559823 |
260 | ″ | ″ | https://doi.org/10.1038/356215a0 |
261 | ″ | rdf:type | schema:CreativeWork |
262 | grid-institutes:grid.240145.6 | schema:alternateName | Department of Neuro Oncology, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA |
263 | ″ | ″ | Department of Neuropathology, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA |
264 | ″ | ″ | Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA |
265 | ″ | ″ | Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA |
266 | ″ | ″ | Department of Tumor Biology, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA |
267 | ″ | schema:name | Department of Neuro Oncology, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA |
268 | ″ | ″ | Department of Neuropathology, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA |
269 | ″ | ″ | Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA |
270 | ″ | ″ | Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA |
271 | ″ | ″ | Department of Tumor Biology, The University of Texas M.D. Anderson Cancer Center, 77030, Houston, Texas, USA |
272 | ″ | rdf:type | schema:Organization |
273 | grid-institutes:grid.34477.33 | schema:alternateName | Department of Neurosurgery, University of Washington, 98195, Seattle, WA, USA |
274 | ″ | schema:name | Department of Neurosurgery, University of Washington, 98195, Seattle, WA, USA |
275 | ″ | rdf:type | schema:Organization |
276 | grid-institutes:grid.39382.33 | schema:alternateName | Division of Molecular Virology, Baylor College of Medicine, 77030, Houston, Texas, USA |
277 | ″ | schema:name | Division of Molecular Virology, Baylor College of Medicine, 77030, Houston, Texas, USA |
278 | ″ | rdf:type | schema:Organization |