Bifurcation and stability of dynamical structures at a current instability View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-09

AUTHORS

M. Büttiker, H. Thomas

ABSTRACT

We investigate bifurcation and stability of nonuniform current states at a voltage-controlled current instability. We consider a model which exhibits bulk negative differential conductivity due to Bragg scattering of hot electrons. The system is described by balance equations for momentum and energy densities of the carriers. These transport fields are coupled to Maxwell's equations. The uniform stationary current state is unstable against long-wavelength dielectric relaxation modes at a critical field. We find that the softening of these modes gives rise to a family of periodic travelling waves and to a solitary solution (dipole domain). We show that the periodic travelling waves are unstable, wheras the dipole domain can be stabilized by coupling the sample to a suitable external circuit, if the static impedance of the sample in the domain state is negative. The model describes therefore a discontinuous nonequilibrium transition to a large amplitude domain state. More... »

PAGES

301-311

References to SciGraph publications

  • 1979-06. Stability domain of coherent laser waves in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • 1979-09. Hydrodynamic modes, soft modes and fluctuation spectra near the threshold of a current instability in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • 1978. Stability of Nonuniform States in Systems Exhibiting Continuous Bifurcation in SOLITONS AND CONDENSED MATTER PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01325626

    DOI

    http://dx.doi.org/10.1007/bf01325626

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1017089315


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "IBM Thomas J. Watson Research Center, PO Box 218, 10598, Yorktown Heights, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.481554.9", 
              "name": [
                "IBM Thomas J. Watson Research Center, PO Box 218, 10598, Yorktown Heights, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "B\u00fcttiker", 
            "givenName": "M.", 
            "id": "sg:person.01246372247.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246372247.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstra\u00dfe 82, CH-4056, Basel, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.6612.3", 
              "name": [
                "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstra\u00dfe 82, CH-4056, Basel, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thomas", 
            "givenName": "H.", 
            "id": "sg:person.0711120037.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01323504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050466526", 
              "https://doi.org/10.1007/bf01323504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-81291-0_35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016879167", 
              "https://doi.org/10.1007/978-3-642-81291-0_35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01323697", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007292437", 
              "https://doi.org/10.1007/bf01323697"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1979-09", 
        "datePublishedReg": "1979-09-01", 
        "description": "We investigate bifurcation and stability of nonuniform current states at a voltage-controlled current instability. We consider a model which exhibits bulk negative differential conductivity due to Bragg scattering of hot electrons. The system is described by balance equations for momentum and energy densities of the carriers. These transport fields are coupled to Maxwell's equations. The uniform stationary current state is unstable against long-wavelength dielectric relaxation modes at a critical field. We find that the softening of these modes gives rise to a family of periodic travelling waves and to a solitary solution (dipole domain). We show that the periodic travelling waves are unstable, wheras the dipole domain can be stabilized by coupling the sample to a suitable external circuit, if the static impedance of the sample in the domain state is negative. The model describes therefore a discontinuous nonequilibrium transition to a large amplitude domain state.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01325626", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1285002", 
            "issn": [
              "0722-3277", 
              "1431-584X"
            ], 
            "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "34"
          }
        ], 
        "keywords": [
          "solitary solutions", 
          "negative differential conductivity", 
          "Maxwell's equations", 
          "critical field", 
          "current instability", 
          "dynamical structure", 
          "bulk negative differential conductivity", 
          "nonequilibrium transitions", 
          "balance equations", 
          "differential conductivity", 
          "domain state", 
          "equations", 
          "Bragg scattering", 
          "bifurcation", 
          "waves", 
          "hot electrons", 
          "dipole domains", 
          "transport field", 
          "relaxation modes", 
          "external circuit", 
          "field", 
          "instability", 
          "current state", 
          "model", 
          "momentum", 
          "dielectric relaxation modes", 
          "electrons", 
          "energy density", 
          "state", 
          "solution", 
          "stability", 
          "scattering", 
          "static impedance", 
          "mode", 
          "impedance", 
          "transition", 
          "system", 
          "circuit", 
          "conductivity", 
          "density", 
          "structure", 
          "domain", 
          "softening", 
          "carriers", 
          "rise", 
          "family", 
          "samples"
        ], 
        "name": "Bifurcation and stability of dynamical structures at a current instability", 
        "pagination": "301-311", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1017089315"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01325626"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01325626", 
          "https://app.dimensions.ai/details/publication/pub.1017089315"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_145.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01325626"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01325626'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01325626'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01325626'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01325626'


     

    This table displays all metadata directly associated to this object as RDF triples.

    126 TRIPLES      21 PREDICATES      75 URIs      64 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01325626 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N067ce308a2444f9982f923f508d36653
    4 schema:citation sg:pub.10.1007/978-3-642-81291-0_35
    5 sg:pub.10.1007/bf01323504
    6 sg:pub.10.1007/bf01323697
    7 schema:datePublished 1979-09
    8 schema:datePublishedReg 1979-09-01
    9 schema:description We investigate bifurcation and stability of nonuniform current states at a voltage-controlled current instability. We consider a model which exhibits bulk negative differential conductivity due to Bragg scattering of hot electrons. The system is described by balance equations for momentum and energy densities of the carriers. These transport fields are coupled to Maxwell's equations. The uniform stationary current state is unstable against long-wavelength dielectric relaxation modes at a critical field. We find that the softening of these modes gives rise to a family of periodic travelling waves and to a solitary solution (dipole domain). We show that the periodic travelling waves are unstable, wheras the dipole domain can be stabilized by coupling the sample to a suitable external circuit, if the static impedance of the sample in the domain state is negative. The model describes therefore a discontinuous nonequilibrium transition to a large amplitude domain state.
    10 schema:genre article
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N48029fd6552a4525b3891cf1c8eaaead
    13 N8423b624b51c498285ec9b77e6ced143
    14 sg:journal.1285002
    15 schema:keywords Bragg scattering
    16 Maxwell's equations
    17 balance equations
    18 bifurcation
    19 bulk negative differential conductivity
    20 carriers
    21 circuit
    22 conductivity
    23 critical field
    24 current instability
    25 current state
    26 density
    27 dielectric relaxation modes
    28 differential conductivity
    29 dipole domains
    30 domain
    31 domain state
    32 dynamical structure
    33 electrons
    34 energy density
    35 equations
    36 external circuit
    37 family
    38 field
    39 hot electrons
    40 impedance
    41 instability
    42 mode
    43 model
    44 momentum
    45 negative differential conductivity
    46 nonequilibrium transitions
    47 relaxation modes
    48 rise
    49 samples
    50 scattering
    51 softening
    52 solitary solutions
    53 solution
    54 stability
    55 state
    56 static impedance
    57 structure
    58 system
    59 transition
    60 transport field
    61 waves
    62 schema:name Bifurcation and stability of dynamical structures at a current instability
    63 schema:pagination 301-311
    64 schema:productId Nbd7446d83a1e4045ac020392cd2b52d3
    65 Nc537cb6a1ac1464f8cc40d302217d28b
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017089315
    67 https://doi.org/10.1007/bf01325626
    68 schema:sdDatePublished 2022-10-01T06:27
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher Ndfaef65830944589bc4311551869be30
    71 schema:url https://doi.org/10.1007/bf01325626
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N067ce308a2444f9982f923f508d36653 rdf:first sg:person.01246372247.07
    76 rdf:rest N46e7301a88a64b87a9cdb3ab8b546f2c
    77 N46e7301a88a64b87a9cdb3ab8b546f2c rdf:first sg:person.0711120037.13
    78 rdf:rest rdf:nil
    79 N48029fd6552a4525b3891cf1c8eaaead schema:volumeNumber 34
    80 rdf:type schema:PublicationVolume
    81 N8423b624b51c498285ec9b77e6ced143 schema:issueNumber 3
    82 rdf:type schema:PublicationIssue
    83 Nbd7446d83a1e4045ac020392cd2b52d3 schema:name doi
    84 schema:value 10.1007/bf01325626
    85 rdf:type schema:PropertyValue
    86 Nc537cb6a1ac1464f8cc40d302217d28b schema:name dimensions_id
    87 schema:value pub.1017089315
    88 rdf:type schema:PropertyValue
    89 Ndfaef65830944589bc4311551869be30 schema:name Springer Nature - SN SciGraph project
    90 rdf:type schema:Organization
    91 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Mathematical Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Pure Mathematics
    96 rdf:type schema:DefinedTerm
    97 sg:journal.1285002 schema:issn 0722-3277
    98 1431-584X
    99 schema:name Zeitschrift für Physik B Condensed Matter
    100 schema:publisher Springer Nature
    101 rdf:type schema:Periodical
    102 sg:person.01246372247.07 schema:affiliation grid-institutes:grid.481554.9
    103 schema:familyName Büttiker
    104 schema:givenName M.
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246372247.07
    106 rdf:type schema:Person
    107 sg:person.0711120037.13 schema:affiliation grid-institutes:grid.6612.3
    108 schema:familyName Thomas
    109 schema:givenName H.
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13
    111 rdf:type schema:Person
    112 sg:pub.10.1007/978-3-642-81291-0_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016879167
    113 https://doi.org/10.1007/978-3-642-81291-0_35
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/bf01323504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050466526
    116 https://doi.org/10.1007/bf01323504
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/bf01323697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007292437
    119 https://doi.org/10.1007/bf01323697
    120 rdf:type schema:CreativeWork
    121 grid-institutes:grid.481554.9 schema:alternateName IBM Thomas J. Watson Research Center, PO Box 218, 10598, Yorktown Heights, NY, USA
    122 schema:name IBM Thomas J. Watson Research Center, PO Box 218, 10598, Yorktown Heights, NY, USA
    123 rdf:type schema:Organization
    124 grid-institutes:grid.6612.3 schema:alternateName Institut für Physik, Universität Basel, Klingelbergstraße 82, CH-4056, Basel, Switzerland
    125 schema:name Institut für Physik, Universität Basel, Klingelbergstraße 82, CH-4056, Basel, Switzerland
    126 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...