Hydrodynamic modes, soft modes and fluctuation spectra near the threshold of a current instability View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-09

AUTHORS

M. Büttiker, H. Thomas

ABSTRACT

We give a full threedimensional treatment of the stability and the fluctuations of the uniform stationary current state in a voltage-controlled current instability. We consider a model which exhibits bulk negative differential conductivity due to Bragg scattering of hot electrons. The model consists of Langevin equations for the mean momentum and the mean energy of the charged carriers, coupled to Maxwell's equations. We investigate the normal modes and the fluctuation spectra of this system, in particular the occurrence of soft modes and of critical fluctuations at the stability limit of the uniform current state. It is shown that the nature of the normal modes is strongly determined by the electromagnetic interactions between the carriers, giving rise to hydrodynamic flux modes and to dielectric relaxation modes. As the threshold field is approached, the dielectric relaxation modes soften and couple strongly to the flux modes. It is shown that as a consequence of this coupling the exponential decay of the correlation functions due to ordinary dielectric relaxation is followed at very long times by a power law decay due to the hydrodynamic modes. More... »

PAGES

275-287

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01323504

DOI

http://dx.doi.org/10.1007/bf01323504

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050466526


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Thomas J. Watson Research Center, PO Box 218, 10598, Yorktown Heights, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM Thomas J. Watson Research Center, PO Box 218, 10598, Yorktown Heights, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00fcttiker", 
        "givenName": "M.", 
        "id": "sg:person.01246372247.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246372247.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik \u2014 Theoretische Physik, Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.6612.3", 
          "name": [
            "Institut f\u00fcr Physik \u2014 Theoretische Physik, Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "H.", 
        "id": "sg:person.0711120037.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02422673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050592230", 
          "https://doi.org/10.1007/bf02422673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-87640-0_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022899843", 
          "https://doi.org/10.1007/978-3-642-87640-0_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-87640-0_44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002246331", 
          "https://doi.org/10.1007/978-3-642-87640-0_44"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1979-09", 
    "datePublishedReg": "1979-09-01", 
    "description": "We give a full threedimensional treatment of the stability and the fluctuations of the uniform stationary current state in a voltage-controlled current instability. We consider a model which exhibits bulk negative differential conductivity due to Bragg scattering of hot electrons. The model consists of Langevin equations for the mean momentum and the mean energy of the charged carriers, coupled to Maxwell's equations. We investigate the normal modes and the fluctuation spectra of this system, in particular the occurrence of soft modes and of critical fluctuations at the stability limit of the uniform current state. It is shown that the nature of the normal modes is strongly determined by the electromagnetic interactions between the carriers, giving rise to hydrodynamic flux modes and to dielectric relaxation modes. As the threshold field is approached, the dielectric relaxation modes soften and couple strongly to the flux modes. It is shown that as a consequence of this coupling the exponential decay of the correlation functions due to ordinary dielectric relaxation is followed at very long times by a power law decay due to the hydrodynamic modes.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01323504", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1285002", 
        "issn": [
          "0722-3277", 
          "1431-584X"
        ], 
        "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "keywords": [
      "fluctuation spectrum", 
      "hydrodynamic modes", 
      "power-law decay", 
      "normal modes", 
      "negative differential conductivity", 
      "flux modes", 
      "Langevin equation", 
      "Maxwell's equations", 
      "current instability", 
      "bulk negative differential conductivity", 
      "critical fluctuations", 
      "correlation functions", 
      "soft mode", 
      "law decay", 
      "differential conductivity", 
      "equations", 
      "electromagnetic interactions", 
      "threshold field", 
      "exponential decay", 
      "mean momentum", 
      "relaxation modes", 
      "mean energy", 
      "Bragg scattering", 
      "stability limit", 
      "hot electrons", 
      "fluctuations", 
      "dielectric relaxation", 
      "instability", 
      "model", 
      "current state", 
      "momentum", 
      "decay", 
      "dielectric relaxation modes", 
      "electrons", 
      "mode", 
      "field", 
      "scattering", 
      "spectra", 
      "state", 
      "relaxation", 
      "long time", 
      "limit", 
      "function", 
      "system", 
      "stability", 
      "energy", 
      "conductivity", 
      "threshold", 
      "carriers", 
      "nature", 
      "time", 
      "interaction", 
      "rise", 
      "consequences", 
      "couples", 
      "occurrence", 
      "treatment"
    ], 
    "name": "Hydrodynamic modes, soft modes and fluctuation spectra near the threshold of a current instability", 
    "pagination": "275-287", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050466526"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01323504"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01323504", 
      "https://app.dimensions.ai/details/publication/pub.1050466526"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_150.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01323504"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01323504'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01323504'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01323504'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01323504'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      85 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01323504 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N75abfe554312491f9251f03b71954511
4 schema:citation sg:pub.10.1007/978-3-642-87640-0_17
5 sg:pub.10.1007/978-3-642-87640-0_44
6 sg:pub.10.1007/bf02422673
7 schema:datePublished 1979-09
8 schema:datePublishedReg 1979-09-01
9 schema:description We give a full threedimensional treatment of the stability and the fluctuations of the uniform stationary current state in a voltage-controlled current instability. We consider a model which exhibits bulk negative differential conductivity due to Bragg scattering of hot electrons. The model consists of Langevin equations for the mean momentum and the mean energy of the charged carriers, coupled to Maxwell's equations. We investigate the normal modes and the fluctuation spectra of this system, in particular the occurrence of soft modes and of critical fluctuations at the stability limit of the uniform current state. It is shown that the nature of the normal modes is strongly determined by the electromagnetic interactions between the carriers, giving rise to hydrodynamic flux modes and to dielectric relaxation modes. As the threshold field is approached, the dielectric relaxation modes soften and couple strongly to the flux modes. It is shown that as a consequence of this coupling the exponential decay of the correlation functions due to ordinary dielectric relaxation is followed at very long times by a power law decay due to the hydrodynamic modes.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N05d211fac0b34cde864b56bff2f0f9a4
13 N6b026a0fca7042e38225123043a34eda
14 sg:journal.1285002
15 schema:keywords Bragg scattering
16 Langevin equation
17 Maxwell's equations
18 bulk negative differential conductivity
19 carriers
20 conductivity
21 consequences
22 correlation functions
23 couples
24 critical fluctuations
25 current instability
26 current state
27 decay
28 dielectric relaxation
29 dielectric relaxation modes
30 differential conductivity
31 electromagnetic interactions
32 electrons
33 energy
34 equations
35 exponential decay
36 field
37 fluctuation spectrum
38 fluctuations
39 flux modes
40 function
41 hot electrons
42 hydrodynamic modes
43 instability
44 interaction
45 law decay
46 limit
47 long time
48 mean energy
49 mean momentum
50 mode
51 model
52 momentum
53 nature
54 negative differential conductivity
55 normal modes
56 occurrence
57 power-law decay
58 relaxation
59 relaxation modes
60 rise
61 scattering
62 soft mode
63 spectra
64 stability
65 stability limit
66 state
67 system
68 threshold
69 threshold field
70 time
71 treatment
72 schema:name Hydrodynamic modes, soft modes and fluctuation spectra near the threshold of a current instability
73 schema:pagination 275-287
74 schema:productId N22c4193fa06041b0a6a47ae91b2c132c
75 N7c36fd2d80f541a1ba386d72d01b3d3e
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050466526
77 https://doi.org/10.1007/bf01323504
78 schema:sdDatePublished 2022-10-01T06:27
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N89294cbe3ebf42e6bc95a085a7e7943d
81 schema:url https://doi.org/10.1007/bf01323504
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N05d211fac0b34cde864b56bff2f0f9a4 schema:issueNumber 3
86 rdf:type schema:PublicationIssue
87 N22c4193fa06041b0a6a47ae91b2c132c schema:name dimensions_id
88 schema:value pub.1050466526
89 rdf:type schema:PropertyValue
90 N6b026a0fca7042e38225123043a34eda schema:volumeNumber 33
91 rdf:type schema:PublicationVolume
92 N75abfe554312491f9251f03b71954511 rdf:first sg:person.01246372247.07
93 rdf:rest N99af65cc7fee4b66a576a1e2c870ffe9
94 N7c36fd2d80f541a1ba386d72d01b3d3e schema:name doi
95 schema:value 10.1007/bf01323504
96 rdf:type schema:PropertyValue
97 N89294cbe3ebf42e6bc95a085a7e7943d schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N99af65cc7fee4b66a576a1e2c870ffe9 rdf:first sg:person.0711120037.13
100 rdf:rest rdf:nil
101 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
102 schema:name Physical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
105 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
106 rdf:type schema:DefinedTerm
107 sg:journal.1285002 schema:issn 0722-3277
108 1431-584X
109 schema:name Zeitschrift für Physik B Condensed Matter
110 schema:publisher Springer Nature
111 rdf:type schema:Periodical
112 sg:person.01246372247.07 schema:affiliation grid-institutes:grid.481554.9
113 schema:familyName Büttiker
114 schema:givenName M.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246372247.07
116 rdf:type schema:Person
117 sg:person.0711120037.13 schema:affiliation grid-institutes:grid.6612.3
118 schema:familyName Thomas
119 schema:givenName H.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13
121 rdf:type schema:Person
122 sg:pub.10.1007/978-3-642-87640-0_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022899843
123 https://doi.org/10.1007/978-3-642-87640-0_17
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/978-3-642-87640-0_44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002246331
126 https://doi.org/10.1007/978-3-642-87640-0_44
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/bf02422673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050592230
129 https://doi.org/10.1007/bf02422673
130 rdf:type schema:CreativeWork
131 grid-institutes:grid.481554.9 schema:alternateName IBM Thomas J. Watson Research Center, PO Box 218, 10598, Yorktown Heights, NY, USA
132 schema:name IBM Thomas J. Watson Research Center, PO Box 218, 10598, Yorktown Heights, NY, USA
133 rdf:type schema:Organization
134 grid-institutes:grid.6612.3 schema:alternateName Institut für Physik — Theoretische Physik, Universität Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
135 schema:name Institut für Physik — Theoretische Physik, Universität Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...