Microdynamics and time-evolution of macroscopic non-Markovian systems. II View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1978-09

AUTHORS

H. Grabert, P. Talkner, P. Hänggi, H. Thomas

ABSTRACT

We study the time-evolution of the joint and the conditional probability of macroscopic variables of a closed system from a microscopic point of view. We derive an exact generalized master equation for their time rate of change which consists of two parts, one instantaneous and local in state space, the other retarded and nonlocal in state space. It is represented by stochastic operators depending both on the initial preparation and on the initial macrodistribution, which reflects the non-Markovian character of the process. The connection with the time-evolution of the single-event probability is discussed. More... »

PAGES

273-280

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01321192

DOI

http://dx.doi.org/10.1007/bf01321192

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009321926


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Stuttgart, Pfaffenwaldring 57, D-7000, Stuttgart 80, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5719.a", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Stuttgart, Pfaffenwaldring 57, D-7000, Stuttgart 80, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grabert", 
        "givenName": "H.", 
        "id": "sg:person.0613514005.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613514005.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Stuttgart, Pfaffenwaldring 57, D-7000, Stuttgart 80, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5719.a", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Stuttgart, Pfaffenwaldring 57, D-7000, Stuttgart 80, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Talkner", 
        "givenName": "P.", 
        "id": "sg:person.01222477634.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222477634.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Illinois, 61801, Urbana, Illinois, USA", 
          "id": "http://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Physics, University of Illinois, 61801, Urbana, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00e4nggi", 
        "givenName": "P.", 
        "id": "sg:person.01201324653.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201324653.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.6612.3", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "H.", 
        "id": "sg:person.0711120037.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01313376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006962995", 
          "https://doi.org/10.1007/bf01313376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01020382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000117996", 
          "https://doi.org/10.1007/bf01020382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01570749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050973527", 
          "https://doi.org/10.1007/bf01570749"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1978-09", 
    "datePublishedReg": "1978-09-01", 
    "description": "We study the time-evolution of the joint and the conditional probability of macroscopic variables of a closed system from a microscopic point of view. We derive an exact generalized master equation for their time rate of change which consists of two parts, one instantaneous and local in state space, the other retarded and nonlocal in state space. It is represented by stochastic operators depending both on the initial preparation and on the initial macrodistribution, which reflects the non-Markovian character of the process. The connection with the time-evolution of the single-event probability is discussed.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01321192", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1285002", 
        "issn": [
          "0722-3277", 
          "1431-584X"
        ], 
        "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "keywords": [
      "state space", 
      "non-Markovian systems", 
      "non-Markovian character", 
      "stochastic operators", 
      "master equation", 
      "macroscopic variables", 
      "single-event probabilities", 
      "conditional probability", 
      "time rate", 
      "microscopic point", 
      "closed system", 
      "space", 
      "equations", 
      "probability", 
      "initial preparation", 
      "operators", 
      "microdynamics", 
      "system", 
      "variables", 
      "point", 
      "connection", 
      "character", 
      "process", 
      "view", 
      "part", 
      "joints", 
      "rate", 
      "macrodistribution", 
      "changes", 
      "preparation"
    ], 
    "name": "Microdynamics and time-evolution of macroscopic non-Markovian systems. II", 
    "pagination": "273-280", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009321926"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01321192"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01321192", 
      "https://app.dimensions.ai/details/publication/pub.1009321926"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_150.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01321192"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01321192'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01321192'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01321192'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01321192'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      21 PREDICATES      58 URIs      47 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01321192 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N0351b4fbbcb24c589d1b224b5ea53546
4 schema:citation sg:pub.10.1007/bf01020382
5 sg:pub.10.1007/bf01313376
6 sg:pub.10.1007/bf01570749
7 schema:datePublished 1978-09
8 schema:datePublishedReg 1978-09-01
9 schema:description We study the time-evolution of the joint and the conditional probability of macroscopic variables of a closed system from a microscopic point of view. We derive an exact generalized master equation for their time rate of change which consists of two parts, one instantaneous and local in state space, the other retarded and nonlocal in state space. It is represented by stochastic operators depending both on the initial preparation and on the initial macrodistribution, which reflects the non-Markovian character of the process. The connection with the time-evolution of the single-event probability is discussed.
10 schema:genre article
11 schema:isAccessibleForFree true
12 schema:isPartOf N88f58f569b29473ea863ca72814e62a7
13 Ncd90c4792a854985aca8a291cfb788fd
14 sg:journal.1285002
15 schema:keywords changes
16 character
17 closed system
18 conditional probability
19 connection
20 equations
21 initial preparation
22 joints
23 macrodistribution
24 macroscopic variables
25 master equation
26 microdynamics
27 microscopic point
28 non-Markovian character
29 non-Markovian systems
30 operators
31 part
32 point
33 preparation
34 probability
35 process
36 rate
37 single-event probabilities
38 space
39 state space
40 stochastic operators
41 system
42 time rate
43 variables
44 view
45 schema:name Microdynamics and time-evolution of macroscopic non-Markovian systems. II
46 schema:pagination 273-280
47 schema:productId N511613ca863a4bff9e85c51bb522abd6
48 Nc024faaed1ad480ba963f8269c7b8999
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009321926
50 https://doi.org/10.1007/bf01321192
51 schema:sdDatePublished 2022-10-01T06:27
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N7017da99dfdc4837a34b5c4de22b7b50
54 schema:url https://doi.org/10.1007/bf01321192
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N0351b4fbbcb24c589d1b224b5ea53546 rdf:first sg:person.0613514005.68
59 rdf:rest Nc81f1a199d98494d9776f1e44b5ea958
60 N3431c56037f847e39d4a22d9919dc69d rdf:first sg:person.01201324653.11
61 rdf:rest Nc88829f1d5384458999b60241cb25caf
62 N511613ca863a4bff9e85c51bb522abd6 schema:name dimensions_id
63 schema:value pub.1009321926
64 rdf:type schema:PropertyValue
65 N7017da99dfdc4837a34b5c4de22b7b50 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N88f58f569b29473ea863ca72814e62a7 schema:issueNumber 3
68 rdf:type schema:PublicationIssue
69 Nc024faaed1ad480ba963f8269c7b8999 schema:name doi
70 schema:value 10.1007/bf01321192
71 rdf:type schema:PropertyValue
72 Nc81f1a199d98494d9776f1e44b5ea958 rdf:first sg:person.01222477634.43
73 rdf:rest N3431c56037f847e39d4a22d9919dc69d
74 Nc88829f1d5384458999b60241cb25caf rdf:first sg:person.0711120037.13
75 rdf:rest rdf:nil
76 Ncd90c4792a854985aca8a291cfb788fd schema:volumeNumber 29
77 rdf:type schema:PublicationVolume
78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
79 schema:name Mathematical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
82 schema:name Pure Mathematics
83 rdf:type schema:DefinedTerm
84 sg:journal.1285002 schema:issn 0722-3277
85 1431-584X
86 schema:name Zeitschrift für Physik B Condensed Matter
87 schema:publisher Springer Nature
88 rdf:type schema:Periodical
89 sg:person.01201324653.11 schema:affiliation grid-institutes:grid.35403.31
90 schema:familyName Hänggi
91 schema:givenName P.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201324653.11
93 rdf:type schema:Person
94 sg:person.01222477634.43 schema:affiliation grid-institutes:grid.5719.a
95 schema:familyName Talkner
96 schema:givenName P.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222477634.43
98 rdf:type schema:Person
99 sg:person.0613514005.68 schema:affiliation grid-institutes:grid.5719.a
100 schema:familyName Grabert
101 schema:givenName H.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613514005.68
103 rdf:type schema:Person
104 sg:person.0711120037.13 schema:affiliation grid-institutes:grid.6612.3
105 schema:familyName Thomas
106 schema:givenName H.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13
108 rdf:type schema:Person
109 sg:pub.10.1007/bf01020382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000117996
110 https://doi.org/10.1007/bf01020382
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf01313376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006962995
113 https://doi.org/10.1007/bf01313376
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf01570749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050973527
116 https://doi.org/10.1007/bf01570749
117 rdf:type schema:CreativeWork
118 grid-institutes:grid.35403.31 schema:alternateName Department of Physics, University of Illinois, 61801, Urbana, Illinois, USA
119 schema:name Department of Physics, University of Illinois, 61801, Urbana, Illinois, USA
120 rdf:type schema:Organization
121 grid-institutes:grid.5719.a schema:alternateName Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-7000, Stuttgart 80, Germany
122 schema:name Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-7000, Stuttgart 80, Germany
123 rdf:type schema:Organization
124 grid-institutes:grid.6612.3 schema:alternateName Institut für Theoretische Physik, Universität Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
125 schema:name Institut für Theoretische Physik, Universität Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...