On rank one perturbations of selfadjoint operators View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-09

AUTHORS

Seppo Hassi, Henk De Snoo

ABSTRACT

LetA be a selfadjoint operator in a Hilbert space ℌ. Its rank one perturbations A+τ(·,ω)ω, ℝ, are studied when ω belongs to the scale space ℌ−2 associated with ℌ+2=domA and (·,·) is the corresponding duality. IfA is nonnegative and ω belongs to the scale space ℌ−1, Gesztesy and Simon [4] prove that the spectral measures ofA(τ), ℝ, converge weakly to the spectral measure of the limiting perturbationA(∞). In factA(∞) can be identified as a Friedrichs extension. Further results for nonnegative operatorsA were obtained by Kiselev and Simon [14] by allowing ω∈ℌ−2, Our purpose is to show that most results of Gesztesy, Kiselev, and Simon are valid for rank one perturbations of selfadjoint operators, which are not necessarily semibounded. We use the fact that rank one perturbations constitute selfadjoint extensions of an associated symmetric operator. The use of so-calledQ-functions [6, 8] facilitates the descriptions. In the special case that ω belongs to the scale space ℌ−1 associated with ℌ+2=dom |A|1/2 the limiting perturbationA(∞) is shown to be the generalized Friedrichs extension [5]. More... »

PAGES

288-300

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01320702

DOI

http://dx.doi.org/10.1007/bf01320702

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024186821


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Department of Mathematics, University of Helsinki, PL 4, 00014, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hassi", 
        "givenName": "Seppo", 
        "id": "sg:person.015224013407.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224013407.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, Postbus 800, 9700 AV, Groningen, Nederland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Snoo", 
        "givenName": "Henk", 
        "id": "sg:person.012621265101.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621265101.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-0348-9106-6_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006940912", 
          "https://doi.org/10.1007/978-3-0348-9106-6_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01214571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014856811", 
          "https://doi.org/10.1007/bf01214571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19831140116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017905796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1995.1074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023629099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1995.1030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028982361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01192120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029120513", 
          "https://doi.org/10.1007/bf01192120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01192120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029120513", 
          "https://doi.org/10.1007/bf01192120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1959-0163192-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029439877"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-09", 
    "datePublishedReg": "1997-09-01", 
    "description": "LetA be a selfadjoint operator in a Hilbert space \u210c. Its rank one perturbations A+\u03c4(\u00b7,\u03c9)\u03c9, \u211d, are studied when \u03c9 belongs to the scale space \u210c\u22122 associated with \u210c+2=domA and (\u00b7,\u00b7) is the corresponding duality. IfA is nonnegative and \u03c9 belongs to the scale space \u210c\u22121, Gesztesy and Simon [4] prove that the spectral measures ofA(\u03c4), \u211d, converge weakly to the spectral measure of the limiting perturbationA(\u221e). In factA(\u221e) can be identified as a Friedrichs extension. Further results for nonnegative operatorsA were obtained by Kiselev and Simon [14] by allowing \u03c9\u2208\u210c\u22122, Our purpose is to show that most results of Gesztesy, Kiselev, and Simon are valid for rank one perturbations of selfadjoint operators, which are not necessarily semibounded. We use the fact that rank one perturbations constitute selfadjoint extensions of an associated symmetric operator. The use of so-calledQ-functions [6, 8] facilitates the descriptions. In the special case that \u03c9 belongs to the scale space \u210c\u22121 associated with \u210c+2=dom |A|1/2 the limiting perturbationA(\u221e) is shown to be the generalized Friedrichs extension [5].", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01320702", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "On rank one perturbations of selfadjoint operators", 
    "pagination": "288-300", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "733a786c63ec14d1c7bca3fea20b90e89b749bd6539a1395228183cf0b8af227"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01320702"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024186821"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01320702", 
      "https://app.dimensions.ai/details/publication/pub.1024186821"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000495.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01320702"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01320702'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01320702'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01320702'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01320702'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01320702 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nbeafa6a4d1cd417e8c18e23043da9823
4 schema:citation sg:pub.10.1007/978-3-0348-9106-6_12
5 sg:pub.10.1007/bf01192120
6 sg:pub.10.1007/bf01214571
7 https://doi.org/10.1002/mana.19831140116
8 https://doi.org/10.1006/jfan.1995.1030
9 https://doi.org/10.1006/jfan.1995.1074
10 https://doi.org/10.1090/s0002-9947-1959-0163192-9
11 schema:datePublished 1997-09
12 schema:datePublishedReg 1997-09-01
13 schema:description LetA be a selfadjoint operator in a Hilbert space ℌ. Its rank one perturbations A+τ(·,ω)ω, ℝ, are studied when ω belongs to the scale space ℌ−2 associated with ℌ+2=domA and (·,·) is the corresponding duality. IfA is nonnegative and ω belongs to the scale space ℌ−1, Gesztesy and Simon [4] prove that the spectral measures ofA(τ), ℝ, converge weakly to the spectral measure of the limiting perturbationA(∞). In factA(∞) can be identified as a Friedrichs extension. Further results for nonnegative operatorsA were obtained by Kiselev and Simon [14] by allowing ω∈ℌ−2, Our purpose is to show that most results of Gesztesy, Kiselev, and Simon are valid for rank one perturbations of selfadjoint operators, which are not necessarily semibounded. We use the fact that rank one perturbations constitute selfadjoint extensions of an associated symmetric operator. The use of so-calledQ-functions [6, 8] facilitates the descriptions. In the special case that ω belongs to the scale space ℌ−1 associated with ℌ+2=dom |A|1/2 the limiting perturbationA(∞) is shown to be the generalized Friedrichs extension [5].
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N2bff4bac4b59445eae41bc060f19664e
18 Ndc25fe278af94747b785f10a97d83a61
19 sg:journal.1136245
20 schema:name On rank one perturbations of selfadjoint operators
21 schema:pagination 288-300
22 schema:productId N8e909ebe42cb4d4fad30a2b9c7bff77f
23 N983baebf466a4dc2904a8ce504bbf5c6
24 N9e84b95edf914d1c877bf7cf13a5cd1f
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024186821
26 https://doi.org/10.1007/bf01320702
27 schema:sdDatePublished 2019-04-10T19:53
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N8e94f50952394d62a997a7fd59ff0510
30 schema:url http://link.springer.com/10.1007/BF01320702
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N2bff4bac4b59445eae41bc060f19664e schema:volumeNumber 29
35 rdf:type schema:PublicationVolume
36 N849bc8216ddb4f279d6079e13a608fbd rdf:first sg:person.012621265101.72
37 rdf:rest rdf:nil
38 N8e909ebe42cb4d4fad30a2b9c7bff77f schema:name dimensions_id
39 schema:value pub.1024186821
40 rdf:type schema:PropertyValue
41 N8e94f50952394d62a997a7fd59ff0510 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N983baebf466a4dc2904a8ce504bbf5c6 schema:name readcube_id
44 schema:value 733a786c63ec14d1c7bca3fea20b90e89b749bd6539a1395228183cf0b8af227
45 rdf:type schema:PropertyValue
46 N9e84b95edf914d1c877bf7cf13a5cd1f schema:name doi
47 schema:value 10.1007/bf01320702
48 rdf:type schema:PropertyValue
49 Nbeafa6a4d1cd417e8c18e23043da9823 rdf:first sg:person.015224013407.55
50 rdf:rest N849bc8216ddb4f279d6079e13a608fbd
51 Ndc25fe278af94747b785f10a97d83a61 schema:issueNumber 3
52 rdf:type schema:PublicationIssue
53 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
54 schema:name Mathematical Sciences
55 rdf:type schema:DefinedTerm
56 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
57 schema:name Pure Mathematics
58 rdf:type schema:DefinedTerm
59 sg:journal.1136245 schema:issn 0378-620X
60 1420-8989
61 schema:name Integral Equations and Operator Theory
62 rdf:type schema:Periodical
63 sg:person.012621265101.72 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
64 schema:familyName De Snoo
65 schema:givenName Henk
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621265101.72
67 rdf:type schema:Person
68 sg:person.015224013407.55 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
69 schema:familyName Hassi
70 schema:givenName Seppo
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224013407.55
72 rdf:type schema:Person
73 sg:pub.10.1007/978-3-0348-9106-6_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006940912
74 https://doi.org/10.1007/978-3-0348-9106-6_12
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf01192120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029120513
77 https://doi.org/10.1007/bf01192120
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf01214571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014856811
80 https://doi.org/10.1007/bf01214571
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1002/mana.19831140116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017905796
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1006/jfan.1995.1030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028982361
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1006/jfan.1995.1074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023629099
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1090/s0002-9947-1959-0163192-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029439877
89 rdf:type schema:CreativeWork
90 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
91 schema:name Department of Mathematics, University of Groningen, Postbus 800, 9700 AV, Groningen, Nederland
92 rdf:type schema:Organization
93 https://www.grid.ac/institutes/grid.7737.4 schema:alternateName University of Helsinki
94 schema:name Department of Mathematics, University of Helsinki, PL 4, 00014, Helsinki, Finland
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...