Integrable and nonintegrable classical spin clusters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-06

AUTHORS

N. Srivastava, C. Kaufman, G. Müller, R. Weber, H. Thomas

ABSTRACT

This study investigates the nonlinear dynamics of a pair of exchange-coupled spins with biaxial exchange and single-site anisotropy. It represents a Hamiltonian system with 2 degrees of freedom for which we have already established the (nontrivial) integrability criteria and constructed the integrals of the motion provided they exist. Here we present a comparative study of the phase-space trajectories for two specific models with the same symmetry properties, one of which (the XY model with exchange anisotropy) is integrable, and the other (the XY model with single-site anisotropy) nonintegrable. In the integrable model, the integrals of the motion (analytic invariants) can be reconstructed numerically by means of time averages of dynamical variables over all trajectories. In the nonintegrable model, such time averages over trajectories define nonanalytic invariants, where the nonanalyticities are associated with the presence of chaotic trajectories. A prominent feature in the nonintegrable model is the occurrence of very long time scales caused by the presence of low-flux cantori, which form “sticky” coats on the boundary between chaotic regions and regular islands or “leaky” walls between different chaotic regions. These cantori dominate the convergence properties of time averages and presumably determine the long-time asymptotic properties of dynamic correlation functions. Finally, we present a special class of integrable systems containing arbitrarily many spins coupled by general biaxial exchange anisotropy. More... »

PAGES

251-268

References to SciGraph publications

  • 1987-09. Integrable and nonintegrable classical spin clusters in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • 1985-05. Algebraic decay in self-similar Markov chains in JOURNAL OF STATISTICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01318307

    DOI

    http://dx.doi.org/10.1007/bf01318307

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030621052


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, The University of Rhode Island, 02881-0817, Kingston, Rhode Island, USA", 
              "id": "http://www.grid.ac/institutes/grid.20431.34", 
              "name": [
                "Department of Physics, The University of Rhode Island, 02881-0817, Kingston, Rhode Island, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Srivastava", 
            "givenName": "N.", 
            "id": "sg:person.07451736216.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07451736216.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, The University of Rhode Island, 02881-0817, Kingston, Rhode Island, USA", 
              "id": "http://www.grid.ac/institutes/grid.20431.34", 
              "name": [
                "Department of Physics, The University of Rhode Island, 02881-0817, Kingston, Rhode Island, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kaufman", 
            "givenName": "C.", 
            "id": "sg:person.016561357271.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016561357271.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, The University of Rhode Island, 02881-0817, Kingston, Rhode Island, USA", 
              "id": "http://www.grid.ac/institutes/grid.20431.34", 
              "name": [
                "Department of Physics, The University of Rhode Island, 02881-0817, Kingston, Rhode Island, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "M\u00fcller", 
            "givenName": "G.", 
            "id": "sg:person.01221016753.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221016753.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.6612.3", 
              "name": [
                "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Weber", 
            "givenName": "R.", 
            "id": "sg:person.014371035671.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371035671.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.6612.3", 
              "name": [
                "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thomas", 
            "givenName": "H.", 
            "id": "sg:person.0711120037.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01303725", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017415994", 
              "https://doi.org/10.1007/bf01303725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01018666", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045723712", 
              "https://doi.org/10.1007/bf01018666"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1988-06", 
        "datePublishedReg": "1988-06-01", 
        "description": "This study investigates the nonlinear dynamics of a pair of exchange-coupled spins with biaxial exchange and single-site anisotropy. It represents a Hamiltonian system with 2 degrees of freedom for which we have already established the (nontrivial) integrability criteria and constructed the integrals of the motion provided they exist. Here we present a comparative study of the phase-space trajectories for two specific models with the same symmetry properties, one of which (the XY model with exchange anisotropy) is integrable, and the other (the XY model with single-site anisotropy) nonintegrable. In the integrable model, the integrals of the motion (analytic invariants) can be reconstructed numerically by means of time averages of dynamical variables over all trajectories. In the nonintegrable model, such time averages over trajectories define nonanalytic invariants, where the nonanalyticities are associated with the presence of chaotic trajectories. A prominent feature in the nonintegrable model is the occurrence of very long time scales caused by the presence of low-flux cantori, which form \u201csticky\u201d coats on the boundary between chaotic regions and regular islands or \u201cleaky\u201d walls between different chaotic regions. These cantori dominate the convergence properties of time averages and presumably determine the long-time asymptotic properties of dynamic correlation functions. Finally, we present a special class of integrable systems containing arbitrarily many spins coupled by general biaxial exchange anisotropy.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01318307", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1285002", 
            "issn": [
              "0722-3277", 
              "1431-584X"
            ], 
            "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "70"
          }
        ], 
        "keywords": [
          "nonintegrable models", 
          "time average", 
          "chaotic region", 
          "long-time asymptotic properties", 
          "different chaotic regions", 
          "single-site anisotropy", 
          "exchange-coupled spins", 
          "phase space trajectories", 
          "same symmetry properties", 
          "dynamic correlation functions", 
          "integrable systems", 
          "integrable models", 
          "dynamical variables", 
          "Hamiltonian systems", 
          "spin clusters", 
          "asymptotic properties", 
          "chaotic trajectories", 
          "convergence properties", 
          "nonlinear dynamics", 
          "regular islands", 
          "symmetry properties", 
          "integrability criterion", 
          "degrees of freedom", 
          "exchange anisotropy", 
          "correlation functions", 
          "special class", 
          "cantori", 
          "specific model", 
          "integrals", 
          "spin", 
          "anisotropy", 
          "trajectories", 
          "long time scales", 
          "motion", 
          "nonanalyticity", 
          "time scales", 
          "invariants", 
          "model", 
          "properties", 
          "dynamics", 
          "class", 
          "system", 
          "freedom", 
          "boundaries", 
          "variables", 
          "function", 
          "clusters", 
          "average", 
          "means", 
          "pairs", 
          "comparative study", 
          "criteria", 
          "region", 
          "features", 
          "prominent feature", 
          "scale", 
          "degree", 
          "presence", 
          "wall", 
          "exchange", 
          "study", 
          "occurrence", 
          "islands", 
          "coat"
        ], 
        "name": "Integrable and nonintegrable classical spin clusters", 
        "pagination": "251-268", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030621052"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01318307"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01318307", 
          "https://app.dimensions.ai/details/publication/pub.1030621052"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_194.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01318307"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01318307'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01318307'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01318307'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01318307'


     

    This table displays all metadata directly associated to this object as RDF triples.

    160 TRIPLES      21 PREDICATES      91 URIs      81 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01318307 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N0101eca53d2d42319576d6172c28b8a3
    4 schema:citation sg:pub.10.1007/bf01018666
    5 sg:pub.10.1007/bf01303725
    6 schema:datePublished 1988-06
    7 schema:datePublishedReg 1988-06-01
    8 schema:description This study investigates the nonlinear dynamics of a pair of exchange-coupled spins with biaxial exchange and single-site anisotropy. It represents a Hamiltonian system with 2 degrees of freedom for which we have already established the (nontrivial) integrability criteria and constructed the integrals of the motion provided they exist. Here we present a comparative study of the phase-space trajectories for two specific models with the same symmetry properties, one of which (the XY model with exchange anisotropy) is integrable, and the other (the XY model with single-site anisotropy) nonintegrable. In the integrable model, the integrals of the motion (analytic invariants) can be reconstructed numerically by means of time averages of dynamical variables over all trajectories. In the nonintegrable model, such time averages over trajectories define nonanalytic invariants, where the nonanalyticities are associated with the presence of chaotic trajectories. A prominent feature in the nonintegrable model is the occurrence of very long time scales caused by the presence of low-flux cantori, which form “sticky” coats on the boundary between chaotic regions and regular islands or “leaky” walls between different chaotic regions. These cantori dominate the convergence properties of time averages and presumably determine the long-time asymptotic properties of dynamic correlation functions. Finally, we present a special class of integrable systems containing arbitrarily many spins coupled by general biaxial exchange anisotropy.
    9 schema:genre article
    10 schema:isAccessibleForFree false
    11 schema:isPartOf Nc18e5e74f09849159dc151c81ac7c9b6
    12 Ne73eb1a213104cf188c07ab67144ec86
    13 sg:journal.1285002
    14 schema:keywords Hamiltonian systems
    15 anisotropy
    16 asymptotic properties
    17 average
    18 boundaries
    19 cantori
    20 chaotic region
    21 chaotic trajectories
    22 class
    23 clusters
    24 coat
    25 comparative study
    26 convergence properties
    27 correlation functions
    28 criteria
    29 degree
    30 degrees of freedom
    31 different chaotic regions
    32 dynamic correlation functions
    33 dynamical variables
    34 dynamics
    35 exchange
    36 exchange anisotropy
    37 exchange-coupled spins
    38 features
    39 freedom
    40 function
    41 integrability criterion
    42 integrable models
    43 integrable systems
    44 integrals
    45 invariants
    46 islands
    47 long time scales
    48 long-time asymptotic properties
    49 means
    50 model
    51 motion
    52 nonanalyticity
    53 nonintegrable models
    54 nonlinear dynamics
    55 occurrence
    56 pairs
    57 phase space trajectories
    58 presence
    59 prominent feature
    60 properties
    61 region
    62 regular islands
    63 same symmetry properties
    64 scale
    65 single-site anisotropy
    66 special class
    67 specific model
    68 spin
    69 spin clusters
    70 study
    71 symmetry properties
    72 system
    73 time average
    74 time scales
    75 trajectories
    76 variables
    77 wall
    78 schema:name Integrable and nonintegrable classical spin clusters
    79 schema:pagination 251-268
    80 schema:productId N8b01121129584aaabe339c819542a61c
    81 Nf0283f86f5ef40f88c55121806aac3c3
    82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030621052
    83 https://doi.org/10.1007/bf01318307
    84 schema:sdDatePublished 2022-09-02T15:46
    85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    86 schema:sdPublisher Nc2fb0dd7945d4ce880ad9e94b603e26c
    87 schema:url https://doi.org/10.1007/bf01318307
    88 sgo:license sg:explorer/license/
    89 sgo:sdDataset articles
    90 rdf:type schema:ScholarlyArticle
    91 N0101eca53d2d42319576d6172c28b8a3 rdf:first sg:person.07451736216.01
    92 rdf:rest N895364536f2945bb9637848a3bc3a037
    93 N895364536f2945bb9637848a3bc3a037 rdf:first sg:person.016561357271.09
    94 rdf:rest Nbc687d639b524625968cddc06e7d4024
    95 N8b01121129584aaabe339c819542a61c schema:name doi
    96 schema:value 10.1007/bf01318307
    97 rdf:type schema:PropertyValue
    98 N9c290584bec14df5b77f5ed78fd96353 rdf:first sg:person.0711120037.13
    99 rdf:rest rdf:nil
    100 Nadc48e8fe7954645bd614a936e934864 rdf:first sg:person.014371035671.39
    101 rdf:rest N9c290584bec14df5b77f5ed78fd96353
    102 Nbc687d639b524625968cddc06e7d4024 rdf:first sg:person.01221016753.35
    103 rdf:rest Nadc48e8fe7954645bd614a936e934864
    104 Nc18e5e74f09849159dc151c81ac7c9b6 schema:issueNumber 2
    105 rdf:type schema:PublicationIssue
    106 Nc2fb0dd7945d4ce880ad9e94b603e26c schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 Ne73eb1a213104cf188c07ab67144ec86 schema:volumeNumber 70
    109 rdf:type schema:PublicationVolume
    110 Nf0283f86f5ef40f88c55121806aac3c3 schema:name dimensions_id
    111 schema:value pub.1030621052
    112 rdf:type schema:PropertyValue
    113 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Mathematical Sciences
    115 rdf:type schema:DefinedTerm
    116 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Pure Mathematics
    118 rdf:type schema:DefinedTerm
    119 sg:journal.1285002 schema:issn 0722-3277
    120 1431-584X
    121 schema:name Zeitschrift für Physik B Condensed Matter
    122 schema:publisher Springer Nature
    123 rdf:type schema:Periodical
    124 sg:person.01221016753.35 schema:affiliation grid-institutes:grid.20431.34
    125 schema:familyName Müller
    126 schema:givenName G.
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221016753.35
    128 rdf:type schema:Person
    129 sg:person.014371035671.39 schema:affiliation grid-institutes:grid.6612.3
    130 schema:familyName Weber
    131 schema:givenName R.
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371035671.39
    133 rdf:type schema:Person
    134 sg:person.016561357271.09 schema:affiliation grid-institutes:grid.20431.34
    135 schema:familyName Kaufman
    136 schema:givenName C.
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016561357271.09
    138 rdf:type schema:Person
    139 sg:person.0711120037.13 schema:affiliation grid-institutes:grid.6612.3
    140 schema:familyName Thomas
    141 schema:givenName H.
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13
    143 rdf:type schema:Person
    144 sg:person.07451736216.01 schema:affiliation grid-institutes:grid.20431.34
    145 schema:familyName Srivastava
    146 schema:givenName N.
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07451736216.01
    148 rdf:type schema:Person
    149 sg:pub.10.1007/bf01018666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045723712
    150 https://doi.org/10.1007/bf01018666
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/bf01303725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017415994
    153 https://doi.org/10.1007/bf01303725
    154 rdf:type schema:CreativeWork
    155 grid-institutes:grid.20431.34 schema:alternateName Department of Physics, The University of Rhode Island, 02881-0817, Kingston, Rhode Island, USA
    156 schema:name Department of Physics, The University of Rhode Island, 02881-0817, Kingston, Rhode Island, USA
    157 rdf:type schema:Organization
    158 grid-institutes:grid.6612.3 schema:alternateName Institut für Physik, Universität Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
    159 schema:name Institut für Physik, Universität Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
    160 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...