Information, information gain, and efficiency of self-organizing systems close to instability points View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1985-09

AUTHORS

H. Haken

ABSTRACT

Selforganizing systems are those which can acquire macroscopic spatial, temporal, or spatio-temporal structures without interference from the outside by mere changes of control parameters. The slaving principle which has been derived for such systems close to their instability points allows one to give the probability distribution of the total system a specific form. This in turn allows one to decompose information and information gain into a part which refers to the order parameters alone and a second part which is a sum over the information of the slaved modes averaged over the distribution of the order parameters. Close to instability points the information of the order parameters changes dramatically whereas the information of the slaved modes does not. Therefore close to these points it is sufficient to study the behavior of the order parameter information and information gain which is done explicitly for a large class of systems undergoing nonequilibrium phase transitions. It is shown how information and information gain as well as efficiency (in the sense defined in this paper) can be measured directly. More... »

PAGES

329-334

References to SciGraph publications

  • 1968-10. Quantum theory of light propagation in a fluctuating laser-active medium in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 1983. Synergetics, An Introduction in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01317800

    DOI

    http://dx.doi.org/10.1007/bf01317800

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039589629


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Stuttgart", 
              "id": "https://www.grid.ac/institutes/grid.5719.a", 
              "name": [
                "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Stuttgart, Pfaffenwaldring 57/IV, D-7000, Stuttgart 80, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Haken", 
            "givenName": "H.", 
            "id": "sg:person.012214634317.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012214634317.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01405384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023699124", 
              "https://doi.org/10.1007/bf01405384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aoms/1177729694", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026070931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-88338-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030321857", 
              "https://doi.org/10.1007/978-3-642-88338-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-88338-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030321857", 
              "https://doi.org/10.1007/978-3-642-88338-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1538-7305.1948.tb01338.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052867467"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1985-09", 
        "datePublishedReg": "1985-09-01", 
        "description": "Selforganizing systems are those which can acquire macroscopic spatial, temporal, or spatio-temporal structures without interference from the outside by mere changes of control parameters. The slaving principle which has been derived for such systems close to their instability points allows one to give the probability distribution of the total system a specific form. This in turn allows one to decompose information and information gain into a part which refers to the order parameters alone and a second part which is a sum over the information of the slaved modes averaged over the distribution of the order parameters. Close to instability points the information of the order parameters changes dramatically whereas the information of the slaved modes does not. Therefore close to these points it is sufficient to study the behavior of the order parameter information and information gain which is done explicitly for a large class of systems undergoing nonequilibrium phase transitions. It is shown how information and information gain as well as efficiency (in the sense defined in this paper) can be measured directly.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01317800", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1285002", 
            "issn": [
              "0722-3277", 
              "1431-584X"
            ], 
            "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "61"
          }
        ], 
        "name": "Information, information gain, and efficiency of self-organizing systems close to instability points", 
        "pagination": "329-334", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bc95cd6e25ed80a8561df6b1e752be45ee3609c5697525bfe62d0ed8dcb7705b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01317800"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039589629"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01317800", 
          "https://app.dimensions.ai/details/publication/pub.1039589629"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46741_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01317800"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01317800'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01317800'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01317800'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01317800'


     

    This table displays all metadata directly associated to this object as RDF triples.

    75 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01317800 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author N34ee69d6427540e6881e7ba5925921f8
    4 schema:citation sg:pub.10.1007/978-3-642-88338-5
    5 sg:pub.10.1007/bf01405384
    6 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
    7 https://doi.org/10.1214/aoms/1177729694
    8 schema:datePublished 1985-09
    9 schema:datePublishedReg 1985-09-01
    10 schema:description Selforganizing systems are those which can acquire macroscopic spatial, temporal, or spatio-temporal structures without interference from the outside by mere changes of control parameters. The slaving principle which has been derived for such systems close to their instability points allows one to give the probability distribution of the total system a specific form. This in turn allows one to decompose information and information gain into a part which refers to the order parameters alone and a second part which is a sum over the information of the slaved modes averaged over the distribution of the order parameters. Close to instability points the information of the order parameters changes dramatically whereas the information of the slaved modes does not. Therefore close to these points it is sufficient to study the behavior of the order parameter information and information gain which is done explicitly for a large class of systems undergoing nonequilibrium phase transitions. It is shown how information and information gain as well as efficiency (in the sense defined in this paper) can be measured directly.
    11 schema:genre research_article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N6550fbaeb71e4252aa1312800d0ce5f9
    15 Ne0c27b492dd24671a467a19231c23f0f
    16 sg:journal.1285002
    17 schema:name Information, information gain, and efficiency of self-organizing systems close to instability points
    18 schema:pagination 329-334
    19 schema:productId N0be3249916f04a0f9b4cccd0ec213f8b
    20 N3ad84a6acd4f4aa78d7fb1bdc039a430
    21 N8e2e078b209b4e2ba2dd54d69bd1c6a3
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039589629
    23 https://doi.org/10.1007/bf01317800
    24 schema:sdDatePublished 2019-04-11T13:28
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher Nb42442c54646426a86f25f1a0f896534
    27 schema:url http://link.springer.com/10.1007/BF01317800
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset articles
    30 rdf:type schema:ScholarlyArticle
    31 N0be3249916f04a0f9b4cccd0ec213f8b schema:name readcube_id
    32 schema:value bc95cd6e25ed80a8561df6b1e752be45ee3609c5697525bfe62d0ed8dcb7705b
    33 rdf:type schema:PropertyValue
    34 N34ee69d6427540e6881e7ba5925921f8 rdf:first sg:person.012214634317.11
    35 rdf:rest rdf:nil
    36 N3ad84a6acd4f4aa78d7fb1bdc039a430 schema:name doi
    37 schema:value 10.1007/bf01317800
    38 rdf:type schema:PropertyValue
    39 N6550fbaeb71e4252aa1312800d0ce5f9 schema:issueNumber 3
    40 rdf:type schema:PublicationIssue
    41 N8e2e078b209b4e2ba2dd54d69bd1c6a3 schema:name dimensions_id
    42 schema:value pub.1039589629
    43 rdf:type schema:PropertyValue
    44 Nb42442c54646426a86f25f1a0f896534 schema:name Springer Nature - SN SciGraph project
    45 rdf:type schema:Organization
    46 Ne0c27b492dd24671a467a19231c23f0f schema:volumeNumber 61
    47 rdf:type schema:PublicationVolume
    48 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    49 schema:name Information and Computing Sciences
    50 rdf:type schema:DefinedTerm
    51 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    52 schema:name Information Systems
    53 rdf:type schema:DefinedTerm
    54 sg:journal.1285002 schema:issn 0722-3277
    55 1431-584X
    56 schema:name Zeitschrift für Physik B Condensed Matter
    57 rdf:type schema:Periodical
    58 sg:person.012214634317.11 schema:affiliation https://www.grid.ac/institutes/grid.5719.a
    59 schema:familyName Haken
    60 schema:givenName H.
    61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012214634317.11
    62 rdf:type schema:Person
    63 sg:pub.10.1007/978-3-642-88338-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030321857
    64 https://doi.org/10.1007/978-3-642-88338-5
    65 rdf:type schema:CreativeWork
    66 sg:pub.10.1007/bf01405384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023699124
    67 https://doi.org/10.1007/bf01405384
    68 rdf:type schema:CreativeWork
    69 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052867467
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.1214/aoms/1177729694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026070931
    72 rdf:type schema:CreativeWork
    73 https://www.grid.ac/institutes/grid.5719.a schema:alternateName University of Stuttgart
    74 schema:name Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57/IV, D-7000, Stuttgart 80, Germany
    75 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...