Anomalous dimensions of high-gradient operators in then-vector model in 2+ε dimensions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-02

AUTHORS

Franz Wegner

ABSTRACT

The anomalous dimensions of operators with an arbitrary number of gradients are determined for then-vector model ind=2+ε dimensions in one-loop order. For those operators which do not vanish ind=2 dimensions all anomalous dimensions can be given explicitly. Among the scalar operators (underO(n) andO(d)) with 2s derivatives there is an operator with the full dimensiony=2(1−s)+ɛ(1+s(s−1)/(n−2))+O(ɛ2). Thus similarly as for theQ-matrix model investigated by Kravtsov, Lerner, and Yudson, large positive corrections in one-loop order are obtained for then-vector model. Possible consequences of the corrections are discussed. More... »

PAGES

33-43

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01317354

DOI

http://dx.doi.org/10.1007/bf01317354

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026175995


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Theoretische Physik, Ruprecht-Karls-Universit\u00e4t, Philosophenweg 19, D-6900, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7700.0", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Ruprecht-Karls-Universit\u00e4t, Philosophenweg 19, D-6900, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wegner", 
        "givenName": "Franz", 
        "id": "sg:person.014052244415.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014052244415.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01256494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040080577", 
          "https://doi.org/10.1007/bf01256494"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-02", 
    "datePublishedReg": "1990-02-01", 
    "description": "The anomalous dimensions of operators with an arbitrary number of gradients are determined for then-vector model ind=2+\u03b5 dimensions in one-loop order. For those operators which do not vanish ind=2 dimensions all anomalous dimensions can be given explicitly. Among the scalar operators (underO(n) andO(d)) with 2s derivatives there is an operator with the full dimensiony=2(1\u2212s)+\u025b(1+s(s\u22121)/(n\u22122))+O(\u025b2). Thus similarly as for theQ-matrix model investigated by Kravtsov, Lerner, and Yudson, large positive corrections in one-loop order are obtained for then-vector model. Possible consequences of the corrections are discussed.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01317354", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1285002", 
        "issn": [
          "0722-3277", 
          "1431-584X"
        ], 
        "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "78"
      }
    ], 
    "keywords": [
      "anomalous dimensions", 
      "one-loop order", 
      "vector model", 
      "high-gradient operators", 
      "scalar operators", 
      "operators", 
      "arbitrary number", 
      "model", 
      "dimensions", 
      "order", 
      "derivatives", 
      "correction", 
      "Kravtsov", 
      "number", 
      "gradient", 
      "Lerner", 
      "consequences", 
      "possible consequences", 
      "positive correction", 
      "theQ-matrix model", 
      "Yudson", 
      "large positive corrections"
    ], 
    "name": "Anomalous dimensions of high-gradient operators in then-vector model in 2+\u03b5 dimensions", 
    "pagination": "33-43", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026175995"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01317354"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01317354", 
      "https://app.dimensions.ai/details/publication/pub.1026175995"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_227.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01317354"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01317354'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01317354'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01317354'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01317354'


 

This table displays all metadata directly associated to this object as RDF triples.

84 TRIPLES      22 PREDICATES      49 URIs      40 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01317354 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Nf905f8c5b939414987068f60e211e742
4 schema:citation sg:pub.10.1007/bf01256494
5 schema:datePublished 1990-02
6 schema:datePublishedReg 1990-02-01
7 schema:description The anomalous dimensions of operators with an arbitrary number of gradients are determined for then-vector model ind=2+ε dimensions in one-loop order. For those operators which do not vanish ind=2 dimensions all anomalous dimensions can be given explicitly. Among the scalar operators (underO(n) andO(d)) with 2s derivatives there is an operator with the full dimensiony=2(1−s)+ɛ(1+s(s−1)/(n−2))+O(ɛ2). Thus similarly as for theQ-matrix model investigated by Kravtsov, Lerner, and Yudson, large positive corrections in one-loop order are obtained for then-vector model. Possible consequences of the corrections are discussed.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N282ffcef21d34e86ab7098af43f32b6f
12 Nef2dbf0f163849fda96a97c1fc5d5c88
13 sg:journal.1285002
14 schema:keywords Kravtsov
15 Lerner
16 Yudson
17 anomalous dimensions
18 arbitrary number
19 consequences
20 correction
21 derivatives
22 dimensions
23 gradient
24 high-gradient operators
25 large positive corrections
26 model
27 number
28 one-loop order
29 operators
30 order
31 positive correction
32 possible consequences
33 scalar operators
34 theQ-matrix model
35 vector model
36 schema:name Anomalous dimensions of high-gradient operators in then-vector model in 2+ε dimensions
37 schema:pagination 33-43
38 schema:productId N4edebe70c11d4a6b810dd6414a8cd1f1
39 Nffbf43323c7548ec9abfe986065368c6
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026175995
41 https://doi.org/10.1007/bf01317354
42 schema:sdDatePublished 2022-01-01T18:05
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N7a6c954a28ec44f7be99d9e2ae4dda2c
45 schema:url https://doi.org/10.1007/bf01317354
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N282ffcef21d34e86ab7098af43f32b6f schema:issueNumber 1
50 rdf:type schema:PublicationIssue
51 N4edebe70c11d4a6b810dd6414a8cd1f1 schema:name doi
52 schema:value 10.1007/bf01317354
53 rdf:type schema:PropertyValue
54 N7a6c954a28ec44f7be99d9e2ae4dda2c schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Nef2dbf0f163849fda96a97c1fc5d5c88 schema:volumeNumber 78
57 rdf:type schema:PublicationVolume
58 Nf905f8c5b939414987068f60e211e742 rdf:first sg:person.014052244415.19
59 rdf:rest rdf:nil
60 Nffbf43323c7548ec9abfe986065368c6 schema:name dimensions_id
61 schema:value pub.1026175995
62 rdf:type schema:PropertyValue
63 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
64 schema:name Psychology and Cognitive Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
67 schema:name Psychology
68 rdf:type schema:DefinedTerm
69 sg:journal.1285002 schema:issn 0722-3277
70 1431-584X
71 schema:name Zeitschrift für Physik B Condensed Matter
72 schema:publisher Springer Nature
73 rdf:type schema:Periodical
74 sg:person.014052244415.19 schema:affiliation grid-institutes:grid.7700.0
75 schema:familyName Wegner
76 schema:givenName Franz
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014052244415.19
78 rdf:type schema:Person
79 sg:pub.10.1007/bf01256494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040080577
80 https://doi.org/10.1007/bf01256494
81 rdf:type schema:CreativeWork
82 grid-institutes:grid.7700.0 schema:alternateName Institut für Theoretische Physik, Ruprecht-Karls-Universität, Philosophenweg 19, D-6900, Heidelberg, Germany
83 schema:name Institut für Theoretische Physik, Ruprecht-Karls-Universität, Philosophenweg 19, D-6900, Heidelberg, Germany
84 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...