Mean-field theories for the quantum phase transition in Josephson junction arrays View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1993-06

AUTHORS

J. G. Kissner, U. Eckern

ABSTRACT

We compare two different approaches which both attempt to describe the zero-temperature superconductor-insulator transition in Josephson junction arrays through an effective Ginzburg-Landau functional. Both methods agree only for the special case of a diagonal capacitance matrix (self-charging limit). While the differences in the phase diagram are less significant, we find that the phase diagram are less significant, we find that the fourth order term of the “coarse-grained” functional changes its sign when the range of the interaction, λ, exceeds a few lattice constants. On the other hand, a variational ansatz predicts a positive sign with a coefficient which increases with increasing λ, which implies a large critical region and strong correlation between order parameter fluctuations. More... »

PAGES

155-160

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01315230

DOI

http://dx.doi.org/10.1007/bf01315230

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035715103


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Manchester, M13 9PL, Manchester, UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "Department of Physics, University of Manchester, M13 9PL, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kissner", 
        "givenName": "J. G.", 
        "id": "sg:person.012204437740.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012204437740.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kernforschungszentrum Karlsruhe, Institut f\u00fcr Nukleare Festk\u00f6rperphysik, Postfach 3640, W-7500, Karlsruhe 1, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Kernforschungszentrum Karlsruhe, Institut f\u00fcr Nukleare Festk\u00f6rperphysik, Postfach 3640, W-7500, Karlsruhe 1, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eckern", 
        "givenName": "U.", 
        "id": "sg:person.012657025101.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657025101.49"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1993-06", 
    "datePublishedReg": "1993-06-01", 
    "description": "We compare two different approaches which both attempt to describe the zero-temperature superconductor-insulator transition in Josephson junction arrays through an effective Ginzburg-Landau functional. Both methods agree only for the special case of a diagonal capacitance matrix (self-charging limit). While the differences in the phase diagram are less significant, we find that the phase diagram are less significant, we find that the fourth order term of the \u201ccoarse-grained\u201d functional changes its sign when the range of the interaction, \u03bb, exceeds a few lattice constants. On the other hand, a variational ansatz predicts a positive sign with a coefficient which increases with increasing \u03bb, which implies a large critical region and strong correlation between order parameter fluctuations.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01315230", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1285002", 
        "issn": [
          "0722-3277", 
          "1431-584X"
        ], 
        "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "91"
      }
    ], 
    "keywords": [
      "superconductor-insulator transition", 
      "Josephson junctions", 
      "quantum phase transition", 
      "phase diagram", 
      "fourth order terms", 
      "lattice constants", 
      "variational ansatz", 
      "order parameter fluctuations", 
      "mean-field theory", 
      "phase transition", 
      "transition", 
      "Ginzburg-Landau functional", 
      "diagram", 
      "order terms", 
      "ansatz", 
      "positive sign", 
      "parameter fluctuations", 
      "different approaches", 
      "junctions", 
      "functionals", 
      "special case", 
      "differences", 
      "functional changes", 
      "range", 
      "interaction", 
      "constants", 
      "hand", 
      "coefficient", 
      "critical region", 
      "region", 
      "strong correlation", 
      "fluctuations", 
      "theory", 
      "approach", 
      "method", 
      "cases", 
      "matrix", 
      "terms", 
      "changes", 
      "signs", 
      "correlation", 
      "capacitance matrix", 
      "zero-temperature superconductor-insulator transition", 
      "effective Ginzburg-Landau functional", 
      "diagonal capacitance matrix", 
      "large critical region"
    ], 
    "name": "Mean-field theories for the quantum phase transition in Josephson junction arrays", 
    "pagination": "155-160", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035715103"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01315230"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01315230", 
      "https://app.dimensions.ai/details/publication/pub.1035715103"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_245.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01315230"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01315230'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01315230'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01315230'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01315230'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      21 PREDICATES      72 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01315230 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Nfc827acb3c8b4cbe934a9273ea70553e
4 schema:datePublished 1993-06
5 schema:datePublishedReg 1993-06-01
6 schema:description We compare two different approaches which both attempt to describe the zero-temperature superconductor-insulator transition in Josephson junction arrays through an effective Ginzburg-Landau functional. Both methods agree only for the special case of a diagonal capacitance matrix (self-charging limit). While the differences in the phase diagram are less significant, we find that the phase diagram are less significant, we find that the fourth order term of the “coarse-grained” functional changes its sign when the range of the interaction, λ, exceeds a few lattice constants. On the other hand, a variational ansatz predicts a positive sign with a coefficient which increases with increasing λ, which implies a large critical region and strong correlation between order parameter fluctuations.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf Neab4516f3c764fe8b0b32f18a5e98c79
11 Nf3b987ba18784881a3a5372ac0aa8354
12 sg:journal.1285002
13 schema:keywords Ginzburg-Landau functional
14 Josephson junctions
15 ansatz
16 approach
17 capacitance matrix
18 cases
19 changes
20 coefficient
21 constants
22 correlation
23 critical region
24 diagonal capacitance matrix
25 diagram
26 differences
27 different approaches
28 effective Ginzburg-Landau functional
29 fluctuations
30 fourth order terms
31 functional changes
32 functionals
33 hand
34 interaction
35 junctions
36 large critical region
37 lattice constants
38 matrix
39 mean-field theory
40 method
41 order parameter fluctuations
42 order terms
43 parameter fluctuations
44 phase diagram
45 phase transition
46 positive sign
47 quantum phase transition
48 range
49 region
50 signs
51 special case
52 strong correlation
53 superconductor-insulator transition
54 terms
55 theory
56 transition
57 variational ansatz
58 zero-temperature superconductor-insulator transition
59 schema:name Mean-field theories for the quantum phase transition in Josephson junction arrays
60 schema:pagination 155-160
61 schema:productId N5a1cc5938b2242c0a0578e5e0b56c57d
62 N70b43b681ae749d59d75007ebe73d187
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035715103
64 https://doi.org/10.1007/bf01315230
65 schema:sdDatePublished 2022-01-01T18:06
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher Nb4a67b0264684c82a801a67f1f685aeb
68 schema:url https://doi.org/10.1007/bf01315230
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N5a1cc5938b2242c0a0578e5e0b56c57d schema:name doi
73 schema:value 10.1007/bf01315230
74 rdf:type schema:PropertyValue
75 N70b43b681ae749d59d75007ebe73d187 schema:name dimensions_id
76 schema:value pub.1035715103
77 rdf:type schema:PropertyValue
78 Nb4a67b0264684c82a801a67f1f685aeb schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nc2d5cca43cfe4d448f5b07b22bac1f0a rdf:first sg:person.012657025101.49
81 rdf:rest rdf:nil
82 Neab4516f3c764fe8b0b32f18a5e98c79 schema:volumeNumber 91
83 rdf:type schema:PublicationVolume
84 Nf3b987ba18784881a3a5372ac0aa8354 schema:issueNumber 2
85 rdf:type schema:PublicationIssue
86 Nfc827acb3c8b4cbe934a9273ea70553e rdf:first sg:person.012204437740.64
87 rdf:rest Nc2d5cca43cfe4d448f5b07b22bac1f0a
88 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
89 schema:name Psychology and Cognitive Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
92 schema:name Psychology
93 rdf:type schema:DefinedTerm
94 sg:journal.1285002 schema:issn 0722-3277
95 1431-584X
96 schema:name Zeitschrift für Physik B Condensed Matter
97 schema:publisher Springer Nature
98 rdf:type schema:Periodical
99 sg:person.012204437740.64 schema:affiliation grid-institutes:grid.5379.8
100 schema:familyName Kissner
101 schema:givenName J. G.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012204437740.64
103 rdf:type schema:Person
104 sg:person.012657025101.49 schema:affiliation grid-institutes:grid.7892.4
105 schema:familyName Eckern
106 schema:givenName U.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657025101.49
108 rdf:type schema:Person
109 grid-institutes:grid.5379.8 schema:alternateName Department of Physics, University of Manchester, M13 9PL, Manchester, UK
110 schema:name Department of Physics, University of Manchester, M13 9PL, Manchester, UK
111 rdf:type schema:Organization
112 grid-institutes:grid.7892.4 schema:alternateName Kernforschungszentrum Karlsruhe, Institut für Nukleare Festkörperphysik, Postfach 3640, W-7500, Karlsruhe 1, Germany
113 schema:name Kernforschungszentrum Karlsruhe, Institut für Nukleare Festkörperphysik, Postfach 3640, W-7500, Karlsruhe 1, Germany
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...