Time evolution, correlations, and linear response of non-Markov processes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1977-03

AUTHORS

P. Hänggi, H. Thomas

ABSTRACT

We investigate the time evolution of stochastic non-Markov processes as they occur in the coarse-grained description of open and closed systems. We show that semigroups of propagators exist for all multivariate probability distributions, the generators of which yield a set of time-convolutionless master equations. We discuss the calculation of averages and time-correlation functions. Further, linear response theory is developed for such a system. We find that the response function cannot be expressed as an ordinary time-correlation function. Some aspects of the theory are illustrated for the two-state process and the Gauss process. More... »

PAGES

85-92

References to SciGraph publications

  • 1969-08. On a non-Markoffian master equation in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 1975-09. Linear response and fluctuation theorems for nonstationary stochastic processes in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • 1969-08. On a non-Markoffian master equation in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 1973-10. Some properties of Fokker-Planck equations with memory under detailed balance in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 1973. Statistical treatment of open systems by generalized master equations in QUANTUM STATISTICS IN OPTICS AND SOLID-STATE PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01313376

    DOI

    http://dx.doi.org/10.1007/bf01313376

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006962995


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.6612.3", 
              "name": [
                "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "H\u00e4nggi", 
            "givenName": "P.", 
            "id": "sg:person.01201324653.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201324653.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.6612.3", 
              "name": [
                "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thomas", 
            "givenName": "H.", 
            "id": "sg:person.0711120037.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01392865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000868098", 
              "https://doi.org/10.1007/bf01392865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01392866", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039139641", 
              "https://doi.org/10.1007/bf01392866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01362253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017980358", 
              "https://doi.org/10.1007/bf01362253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01391503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047333744", 
              "https://doi.org/10.1007/bf01391503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0044957", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026554791", 
              "https://doi.org/10.1007/bfb0044957"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1977-03", 
        "datePublishedReg": "1977-03-01", 
        "description": "We investigate the time evolution of stochastic non-Markov processes as they occur in the coarse-grained description of open and closed systems. We show that semigroups of propagators exist for all multivariate probability distributions, the generators of which yield a set of time-convolutionless master equations. We discuss the calculation of averages and time-correlation functions. Further, linear response theory is developed for such a system. We find that the response function cannot be expressed as an ordinary time-correlation function. Some aspects of the theory are illustrated for the two-state process and the Gauss process.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01313376", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1285002", 
            "issn": [
              "0722-3277", 
              "1431-584X"
            ], 
            "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "keywords": [
          "non-Markov processes", 
          "time correlation functions", 
          "time-convolutionless master equation", 
          "multivariate probability distribution", 
          "time evolution", 
          "linear response theory", 
          "master equation", 
          "probability distribution", 
          "Gauss process", 
          "calculation of averages", 
          "response theory", 
          "response function", 
          "closed system", 
          "theory", 
          "equations", 
          "semigroups", 
          "propagator", 
          "linear response", 
          "function", 
          "calculations", 
          "system", 
          "description", 
          "generator", 
          "evolution", 
          "set", 
          "distribution", 
          "two-state process", 
          "process", 
          "average", 
          "correlation", 
          "aspects", 
          "response"
        ], 
        "name": "Time evolution, correlations, and linear response of non-Markov processes", 
        "pagination": "85-92", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006962995"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01313376"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01313376", 
          "https://app.dimensions.ai/details/publication/pub.1006962995"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_112.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01313376"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01313376'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01313376'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01313376'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01313376'


     

    This table displays all metadata directly associated to this object as RDF triples.

    116 TRIPLES      21 PREDICATES      62 URIs      49 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01313376 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nf05369e02df74872994ad09fedccb8e4
    4 schema:citation sg:pub.10.1007/bf01362253
    5 sg:pub.10.1007/bf01391503
    6 sg:pub.10.1007/bf01392865
    7 sg:pub.10.1007/bf01392866
    8 sg:pub.10.1007/bfb0044957
    9 schema:datePublished 1977-03
    10 schema:datePublishedReg 1977-03-01
    11 schema:description We investigate the time evolution of stochastic non-Markov processes as they occur in the coarse-grained description of open and closed systems. We show that semigroups of propagators exist for all multivariate probability distributions, the generators of which yield a set of time-convolutionless master equations. We discuss the calculation of averages and time-correlation functions. Further, linear response theory is developed for such a system. We find that the response function cannot be expressed as an ordinary time-correlation function. Some aspects of the theory are illustrated for the two-state process and the Gauss process.
    12 schema:genre article
    13 schema:isAccessibleForFree true
    14 schema:isPartOf N0249ac6c73ea4ea2b7e0e0f8d161db2e
    15 Nc30fbc7a0b374cc19b2d3590d12e2ebb
    16 sg:journal.1285002
    17 schema:keywords Gauss process
    18 aspects
    19 average
    20 calculation of averages
    21 calculations
    22 closed system
    23 correlation
    24 description
    25 distribution
    26 equations
    27 evolution
    28 function
    29 generator
    30 linear response
    31 linear response theory
    32 master equation
    33 multivariate probability distribution
    34 non-Markov processes
    35 probability distribution
    36 process
    37 propagator
    38 response
    39 response function
    40 response theory
    41 semigroups
    42 set
    43 system
    44 theory
    45 time correlation functions
    46 time evolution
    47 time-convolutionless master equation
    48 two-state process
    49 schema:name Time evolution, correlations, and linear response of non-Markov processes
    50 schema:pagination 85-92
    51 schema:productId N8cf9fd5a13d74c7a85060cfba9057fa5
    52 Na388791e33db43f8863f4b356bdc49f1
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006962995
    54 https://doi.org/10.1007/bf01313376
    55 schema:sdDatePublished 2022-10-01T06:26
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher Ndddd32f023ab4f8cbb6b224da4259e64
    58 schema:url https://doi.org/10.1007/bf01313376
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N0249ac6c73ea4ea2b7e0e0f8d161db2e schema:volumeNumber 26
    63 rdf:type schema:PublicationVolume
    64 N2854da9be49e4b69858fd4c16de94680 rdf:first sg:person.0711120037.13
    65 rdf:rest rdf:nil
    66 N8cf9fd5a13d74c7a85060cfba9057fa5 schema:name dimensions_id
    67 schema:value pub.1006962995
    68 rdf:type schema:PropertyValue
    69 Na388791e33db43f8863f4b356bdc49f1 schema:name doi
    70 schema:value 10.1007/bf01313376
    71 rdf:type schema:PropertyValue
    72 Nc30fbc7a0b374cc19b2d3590d12e2ebb schema:issueNumber 1
    73 rdf:type schema:PublicationIssue
    74 Ndddd32f023ab4f8cbb6b224da4259e64 schema:name Springer Nature - SN SciGraph project
    75 rdf:type schema:Organization
    76 Nf05369e02df74872994ad09fedccb8e4 rdf:first sg:person.01201324653.11
    77 rdf:rest N2854da9be49e4b69858fd4c16de94680
    78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Mathematical Sciences
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Pure Mathematics
    83 rdf:type schema:DefinedTerm
    84 sg:journal.1285002 schema:issn 0722-3277
    85 1431-584X
    86 schema:name Zeitschrift für Physik B Condensed Matter
    87 schema:publisher Springer Nature
    88 rdf:type schema:Periodical
    89 sg:person.01201324653.11 schema:affiliation grid-institutes:grid.6612.3
    90 schema:familyName Hänggi
    91 schema:givenName P.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201324653.11
    93 rdf:type schema:Person
    94 sg:person.0711120037.13 schema:affiliation grid-institutes:grid.6612.3
    95 schema:familyName Thomas
    96 schema:givenName H.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13
    98 rdf:type schema:Person
    99 sg:pub.10.1007/bf01362253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017980358
    100 https://doi.org/10.1007/bf01362253
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bf01391503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047333744
    103 https://doi.org/10.1007/bf01391503
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/bf01392865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000868098
    106 https://doi.org/10.1007/bf01392865
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/bf01392866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039139641
    109 https://doi.org/10.1007/bf01392866
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/bfb0044957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026554791
    112 https://doi.org/10.1007/bfb0044957
    113 rdf:type schema:CreativeWork
    114 grid-institutes:grid.6612.3 schema:alternateName Institut für Physik, Universität Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
    115 schema:name Institut für Physik, Universität Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
    116 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...