Core-electron binding energies in free and supported metal clusters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-03

AUTHORS

G. K. Wertheim

ABSTRACT

Core-electron binding energy shifts in free and supported clusters are discussed using the Born-Haber formalism. For grounded clusters this approach shows that the shift reflects the decrease in the average atomic cohesive energy of the cluster relative to that of the bulk metal. This shift is closely related to the surface-atom core level shift. For free clusters there is a second term reflecting the unit charge left on the cluster by the emission of the photoelectron. In small clusters this term results in the suppression of conduction electron screening. Clusters supported on amorphous carbon remain charged in the final-state, and are similar to free clusters, but have smaller shifts because the substrate reduces the energy of the final state by forming an image charge. The shift in monolayer islands on metallic substrates is determined largely by the adsorption enthalpy of the adatoms. More... »

PAGES

53-63

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01312762

DOI

http://dx.doi.org/10.1007/bf01312762

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003565032


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Alcatel-Lucent (United States)", 
          "id": "https://www.grid.ac/institutes/grid.421036.2", 
          "name": [
            "AT&T Bell Laboratories, 07974, Murray Hill, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wertheim", 
        "givenName": "G. K.", 
        "id": "sg:person.013604377467.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013604377467.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0039-6028(83)90411-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003343715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(83)90411-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003343715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(78)90003-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004138212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(78)90003-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004138212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2614(75)85505-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011909527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(79)90150-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015206928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(79)90150-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015206928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-6090(73)90157-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019833078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-6090(73)90157-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019833078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(81)90215-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021760514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(81)90215-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021760514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(85)90989-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023340720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(85)90989-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023340720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(82)90655-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028553900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(82)90655-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028553900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-0104(85)80169-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036603735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/3/2/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039537197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2614(78)80316-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045253099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(81)91016-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050725370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(81)91016-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050725370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2614(84)80179-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050776451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.431973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058010005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.436003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058014034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.21.4427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060527322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.21.4427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060527322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.23.505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060528835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.23.505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060528835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.1378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060531923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.1378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060531923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.3176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.3176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.1158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.1158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.32.1366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.32.1366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.5384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.5384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060540496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060540496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.41.1425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060783030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.41.1425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060783030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.43.165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.43.165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.1284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.1284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.51.2310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.51.2310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789370"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1987-03", 
    "datePublishedReg": "1987-03-01", 
    "description": "Core-electron binding energy shifts in free and supported clusters are discussed using the Born-Haber formalism. For grounded clusters this approach shows that the shift reflects the decrease in the average atomic cohesive energy of the cluster relative to that of the bulk metal. This shift is closely related to the surface-atom core level shift. For free clusters there is a second term reflecting the unit charge left on the cluster by the emission of the photoelectron. In small clusters this term results in the suppression of conduction electron screening. Clusters supported on amorphous carbon remain charged in the final-state, and are similar to free clusters, but have smaller shifts because the substrate reduces the energy of the final state by forming an image charge. The shift in monolayer islands on metallic substrates is determined largely by the adsorption enthalpy of the adatoms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01312762", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1285002", 
        "issn": [
          "0722-3277", 
          "1431-584X"
        ], 
        "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "66"
      }
    ], 
    "name": "Core-electron binding energies in free and supported metal clusters", 
    "pagination": "53-63", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "10fbc15c496c0340b3e06bee9d250a5d1bf5f30671271ccbddd3c68575b7da52"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01312762"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003565032"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01312762", 
      "https://app.dimensions.ai/details/publication/pub.1003565032"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46772_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01312762"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01312762'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01312762'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01312762'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01312762'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01312762 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N77b4055391bd48a3bd33abfebae4ad9c
4 schema:citation https://doi.org/10.1016/0009-2614(75)85505-9
5 https://doi.org/10.1016/0009-2614(78)80316-9
6 https://doi.org/10.1016/0009-2614(84)80179-7
7 https://doi.org/10.1016/0038-1098(79)90150-9
8 https://doi.org/10.1016/0038-1098(81)91016-4
9 https://doi.org/10.1016/0038-1098(85)90989-5
10 https://doi.org/10.1016/0039-6028(78)90003-1
11 https://doi.org/10.1016/0039-6028(81)90215-6
12 https://doi.org/10.1016/0039-6028(82)90655-0
13 https://doi.org/10.1016/0039-6028(83)90411-9
14 https://doi.org/10.1016/0040-6090(73)90157-0
15 https://doi.org/10.1016/0301-0104(85)80169-5
16 https://doi.org/10.1063/1.431973
17 https://doi.org/10.1063/1.436003
18 https://doi.org/10.1088/0022-3719/3/2/010
19 https://doi.org/10.1103/physrevb.21.4427
20 https://doi.org/10.1103/physrevb.23.505
21 https://doi.org/10.1103/physrevb.27.1378
22 https://doi.org/10.1103/physrevb.27.3176
23 https://doi.org/10.1103/physrevb.27.748
24 https://doi.org/10.1103/physrevb.28.1158
25 https://doi.org/10.1103/physrevb.32.1366
26 https://doi.org/10.1103/physrevb.33.5384
27 https://doi.org/10.1103/physrevb.33.914
28 https://doi.org/10.1103/physrevlett.41.1425
29 https://doi.org/10.1103/physrevlett.43.165
30 https://doi.org/10.1103/physrevlett.45.1284
31 https://doi.org/10.1103/physrevlett.45.821
32 https://doi.org/10.1103/physrevlett.51.2310
33 schema:datePublished 1987-03
34 schema:datePublishedReg 1987-03-01
35 schema:description Core-electron binding energy shifts in free and supported clusters are discussed using the Born-Haber formalism. For grounded clusters this approach shows that the shift reflects the decrease in the average atomic cohesive energy of the cluster relative to that of the bulk metal. This shift is closely related to the surface-atom core level shift. For free clusters there is a second term reflecting the unit charge left on the cluster by the emission of the photoelectron. In small clusters this term results in the suppression of conduction electron screening. Clusters supported on amorphous carbon remain charged in the final-state, and are similar to free clusters, but have smaller shifts because the substrate reduces the energy of the final state by forming an image charge. The shift in monolayer islands on metallic substrates is determined largely by the adsorption enthalpy of the adatoms.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N5dbf8daf3bd94af79950d9a6993be9fe
40 N7207c36a67cd4fa7a25b719b654f5644
41 sg:journal.1285002
42 schema:name Core-electron binding energies in free and supported metal clusters
43 schema:pagination 53-63
44 schema:productId N3655662d7e724193b2df49cf9281c392
45 N83ea2fd0fa5945e488ee911a2faeaeea
46 Nab52a8ba8d53429b8a30207d2f75f970
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003565032
48 https://doi.org/10.1007/bf01312762
49 schema:sdDatePublished 2019-04-11T13:34
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N7e484cc5c28b4be2baaa32f0fd344ff7
52 schema:url http://link.springer.com/10.1007/BF01312762
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N3655662d7e724193b2df49cf9281c392 schema:name doi
57 schema:value 10.1007/bf01312762
58 rdf:type schema:PropertyValue
59 N5dbf8daf3bd94af79950d9a6993be9fe schema:volumeNumber 66
60 rdf:type schema:PublicationVolume
61 N7207c36a67cd4fa7a25b719b654f5644 schema:issueNumber 1
62 rdf:type schema:PublicationIssue
63 N77b4055391bd48a3bd33abfebae4ad9c rdf:first sg:person.013604377467.38
64 rdf:rest rdf:nil
65 N7e484cc5c28b4be2baaa32f0fd344ff7 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N83ea2fd0fa5945e488ee911a2faeaeea schema:name dimensions_id
68 schema:value pub.1003565032
69 rdf:type schema:PropertyValue
70 Nab52a8ba8d53429b8a30207d2f75f970 schema:name readcube_id
71 schema:value 10fbc15c496c0340b3e06bee9d250a5d1bf5f30671271ccbddd3c68575b7da52
72 rdf:type schema:PropertyValue
73 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
74 schema:name Chemical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
77 schema:name Physical Chemistry (incl. Structural)
78 rdf:type schema:DefinedTerm
79 sg:journal.1285002 schema:issn 0722-3277
80 1431-584X
81 schema:name Zeitschrift für Physik B Condensed Matter
82 rdf:type schema:Periodical
83 sg:person.013604377467.38 schema:affiliation https://www.grid.ac/institutes/grid.421036.2
84 schema:familyName Wertheim
85 schema:givenName G. K.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013604377467.38
87 rdf:type schema:Person
88 https://doi.org/10.1016/0009-2614(75)85505-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011909527
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0009-2614(78)80316-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045253099
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0009-2614(84)80179-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050776451
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0038-1098(79)90150-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015206928
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0038-1098(81)91016-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050725370
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0038-1098(85)90989-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023340720
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/0039-6028(78)90003-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004138212
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0039-6028(81)90215-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021760514
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0039-6028(82)90655-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028553900
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/0039-6028(83)90411-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003343715
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/0040-6090(73)90157-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019833078
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0301-0104(85)80169-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036603735
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1063/1.431973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058010005
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1063/1.436003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058014034
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1088/0022-3719/3/2/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039537197
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevb.21.4427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060527322
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevb.23.505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060528835
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevb.27.1378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060531923
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevb.27.3176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060532179
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevb.27.748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060532776
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevb.28.1158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060532890
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevb.32.1366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060537954
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevb.33.5384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060539885
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevb.33.914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060540496
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevlett.41.1425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060783030
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevlett.43.165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060784243
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevlett.45.1284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060785299
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevlett.45.821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060785789
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevlett.51.2310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060789370
145 rdf:type schema:CreativeWork
146 https://www.grid.ac/institutes/grid.421036.2 schema:alternateName Alcatel-Lucent (United States)
147 schema:name AT&T Bell Laboratories, 07974, Murray Hill, New Jersey, USA
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...