The sphericalp-spin interaction spin-glass model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-06

AUTHORS

A. Crisanti, H. Horner, H. -J. Sommers

ABSTRACT

The relaxational dynamics for local spin autocorrelations of the sphericalp-spin interaction spin-glass model is studied in the mean field limit. In the high temperature and high external field regime, the dynamics is ergodic and similar to the behaviour in known liquid-glass transition models. In the static limit, we recover the replica symmetric solution for the long time correlation. This phase becomes unstable on a critical line in the (T, h) plane, where critical slowing down is observed with a cross-over to power law decay of the correlation function ∝t−ν, with an exponent ν varying along the critical line. For low temperatures and low fields, ergodicity in phase space is broken. For small fields the transition is discontinuous, and approaching this transition from above, two long time scales are seen to emerge. This dynamical transition lies at a somewhat higher temperature than the one obtained within replica theory. For larger fields the transition becomes continuous at some tricritical point. The low temperature phase with broken ergodicity is studied within a modified equilibrium theory and alternatively for adiabatic cooling across the transition line. This latter scheme yields rather detailed insight into the formation and structure of the ergodic components. More... »

PAGES

257-271

References to SciGraph publications

  • 1992-06. Dynamics of learning for the binary perceptron problem in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • 1990-02. Properties of an adiabatically cooled SK spin glass in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • 1985-06. Dynamic scaling for spin glasses near the de Almeida-Thouless line in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • 1991-02. Dynamics of the finite SK spin-glass in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • 1984-06. Some aspects of phase transitions described by the self consistent current relaxation theory in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • 1992-10. The sphericalp-spin interaction spin glass model: the statics in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • 1992-10. Dynamics of learning and generalization in a binary perceptron model in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01312184

    DOI

    http://dx.doi.org/10.1007/bf01312184

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025459844


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sapienza University of Rome", 
              "id": "https://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "Dipartimento di Fisica, Universit\u00e0 di Roma \u201cLa Sapienza\u201d, I-00185, Roma, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Crisanti", 
            "givenName": "A.", 
            "id": "sg:person.01034617712.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034617712.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Heidelberg University", 
              "id": "https://www.grid.ac/institutes/grid.7700.0", 
              "name": [
                "Institut f\u00fcr Theoretische Physik, Ruprecht-Karls-Universit\u00e4t, D-6900, Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Horner", 
            "givenName": "H.", 
            "id": "sg:person.011710531436.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011710531436.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Duisburg-Essen", 
              "id": "https://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Fachbereich Physik, Universit\u00e4t-Gesamthochschule Essen, D-4300, Essen 1, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sommers", 
            "givenName": "H. -J.", 
            "id": "sg:person.01122720040.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122720040.69"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01309287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002324729", 
              "https://doi.org/10.1007/bf01309287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01309287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002324729", 
              "https://doi.org/10.1007/bf01309287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01469695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017243540", 
              "https://doi.org/10.1007/bf01469695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01469695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017243540", 
              "https://doi.org/10.1007/bf01469695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01309290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019548277", 
              "https://doi.org/10.1007/bf01309290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01309290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019548277", 
              "https://doi.org/10.1007/bf01309290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01313839", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019862541", 
              "https://doi.org/10.1007/bf01313839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01313839", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019862541", 
              "https://doi.org/10.1007/bf01313839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01390654", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024679356", 
              "https://doi.org/10.1007/bf01390654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01453763", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035992851", 
              "https://doi.org/10.1007/bf01453763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01453763", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035992851", 
              "https://doi.org/10.1007/bf01453763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(85)90374-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039458837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(85)90374-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039458837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01304264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042559463", 
              "https://doi.org/10.1007/bf01304264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01304264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042559463", 
              "https://doi.org/10.1007/bf01304264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/jp1:1993183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056973966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.29.2765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060471988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.29.2765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060471988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.25.6860", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060530846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.25.6860", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060530846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.36.5388", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060544038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.36.5388", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060544038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.35.1792", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060779672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.35.1792", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060779672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.47.935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060786921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.47.935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060786921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.58.2091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060794974"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.58.2091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060794974"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.49.435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.49.435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511628771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098708991"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1993-06", 
        "datePublishedReg": "1993-06-01", 
        "description": "The relaxational dynamics for local spin autocorrelations of the sphericalp-spin interaction spin-glass model is studied in the mean field limit. In the high temperature and high external field regime, the dynamics is ergodic and similar to the behaviour in known liquid-glass transition models. In the static limit, we recover the replica symmetric solution for the long time correlation. This phase becomes unstable on a critical line in the (T, h) plane, where critical slowing down is observed with a cross-over to power law decay of the correlation function \u221dt\u2212\u03bd, with an exponent \u03bd varying along the critical line. For low temperatures and low fields, ergodicity in phase space is broken. For small fields the transition is discontinuous, and approaching this transition from above, two long time scales are seen to emerge. This dynamical transition lies at a somewhat higher temperature than the one obtained within replica theory. For larger fields the transition becomes continuous at some tricritical point. The low temperature phase with broken ergodicity is studied within a modified equilibrium theory and alternatively for adiabatic cooling across the transition line. This latter scheme yields rather detailed insight into the formation and structure of the ergodic components.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01312184", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1285002", 
            "issn": [
              "0722-3277", 
              "1431-584X"
            ], 
            "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "92"
          }
        ], 
        "name": "The sphericalp-spin interaction spin-glass model", 
        "pagination": "257-271", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "794afa146f3f7d4a0da239a31365d9fd1ea9dd19f04444a3db3cfa63f8416b46"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01312184"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025459844"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01312184", 
          "https://app.dimensions.ai/details/publication/pub.1025459844"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46738_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01312184"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01312184'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01312184'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01312184'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01312184'


     

    This table displays all metadata directly associated to this object as RDF triples.

    139 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01312184 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N001fa7948adf48bdb2ba8572ce2c07de
    4 schema:citation sg:pub.10.1007/bf01304264
    5 sg:pub.10.1007/bf01309287
    6 sg:pub.10.1007/bf01309290
    7 sg:pub.10.1007/bf01313839
    8 sg:pub.10.1007/bf01390654
    9 sg:pub.10.1007/bf01453763
    10 sg:pub.10.1007/bf01469695
    11 https://doi.org/10.1016/0550-3213(85)90374-8
    12 https://doi.org/10.1017/cbo9780511628771
    13 https://doi.org/10.1051/jp1:1993183
    14 https://doi.org/10.1103/physreva.29.2765
    15 https://doi.org/10.1103/physrevb.25.6860
    16 https://doi.org/10.1103/physrevb.36.5388
    17 https://doi.org/10.1103/physrevlett.35.1792
    18 https://doi.org/10.1103/physrevlett.47.935
    19 https://doi.org/10.1103/physrevlett.58.2091
    20 https://doi.org/10.1103/revmodphys.49.435
    21 schema:datePublished 1993-06
    22 schema:datePublishedReg 1993-06-01
    23 schema:description The relaxational dynamics for local spin autocorrelations of the sphericalp-spin interaction spin-glass model is studied in the mean field limit. In the high temperature and high external field regime, the dynamics is ergodic and similar to the behaviour in known liquid-glass transition models. In the static limit, we recover the replica symmetric solution for the long time correlation. This phase becomes unstable on a critical line in the (T, h) plane, where critical slowing down is observed with a cross-over to power law decay of the correlation function ∝t−ν, with an exponent ν varying along the critical line. For low temperatures and low fields, ergodicity in phase space is broken. For small fields the transition is discontinuous, and approaching this transition from above, two long time scales are seen to emerge. This dynamical transition lies at a somewhat higher temperature than the one obtained within replica theory. For larger fields the transition becomes continuous at some tricritical point. The low temperature phase with broken ergodicity is studied within a modified equilibrium theory and alternatively for adiabatic cooling across the transition line. This latter scheme yields rather detailed insight into the formation and structure of the ergodic components.
    24 schema:genre research_article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree false
    27 schema:isPartOf Nac278182b3ea48709f877700601dd910
    28 Ne8f95c5fa8e14298bc7af6b08ca16634
    29 sg:journal.1285002
    30 schema:name The sphericalp-spin interaction spin-glass model
    31 schema:pagination 257-271
    32 schema:productId Nab4ca0e7700a4653a7e30104f6b93a69
    33 Nb9b62b2b3f1f4dcd88d1c7d134e98982
    34 Ndeeeffb3991049948a78a49470860784
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025459844
    36 https://doi.org/10.1007/bf01312184
    37 schema:sdDatePublished 2019-04-11T13:27
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher N92f3a889aef34c2e8d7cea96ac148f7b
    40 schema:url http://link.springer.com/10.1007/BF01312184
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N001fa7948adf48bdb2ba8572ce2c07de rdf:first sg:person.01034617712.80
    45 rdf:rest N465c147cdb2440038a1c406461c1d069
    46 N465c147cdb2440038a1c406461c1d069 rdf:first sg:person.011710531436.17
    47 rdf:rest Nf3682c4a308f4cf29dc0c14d54940cda
    48 N92f3a889aef34c2e8d7cea96ac148f7b schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 Nab4ca0e7700a4653a7e30104f6b93a69 schema:name doi
    51 schema:value 10.1007/bf01312184
    52 rdf:type schema:PropertyValue
    53 Nac278182b3ea48709f877700601dd910 schema:volumeNumber 92
    54 rdf:type schema:PublicationVolume
    55 Nb9b62b2b3f1f4dcd88d1c7d134e98982 schema:name readcube_id
    56 schema:value 794afa146f3f7d4a0da239a31365d9fd1ea9dd19f04444a3db3cfa63f8416b46
    57 rdf:type schema:PropertyValue
    58 Ndeeeffb3991049948a78a49470860784 schema:name dimensions_id
    59 schema:value pub.1025459844
    60 rdf:type schema:PropertyValue
    61 Ne8f95c5fa8e14298bc7af6b08ca16634 schema:issueNumber 2
    62 rdf:type schema:PublicationIssue
    63 Nf3682c4a308f4cf29dc0c14d54940cda rdf:first sg:person.01122720040.69
    64 rdf:rest rdf:nil
    65 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Physical Sciences
    67 rdf:type schema:DefinedTerm
    68 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Other Physical Sciences
    70 rdf:type schema:DefinedTerm
    71 sg:journal.1285002 schema:issn 0722-3277
    72 1431-584X
    73 schema:name Zeitschrift für Physik B Condensed Matter
    74 rdf:type schema:Periodical
    75 sg:person.01034617712.80 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
    76 schema:familyName Crisanti
    77 schema:givenName A.
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034617712.80
    79 rdf:type schema:Person
    80 sg:person.01122720040.69 schema:affiliation https://www.grid.ac/institutes/grid.5718.b
    81 schema:familyName Sommers
    82 schema:givenName H. -J.
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122720040.69
    84 rdf:type schema:Person
    85 sg:person.011710531436.17 schema:affiliation https://www.grid.ac/institutes/grid.7700.0
    86 schema:familyName Horner
    87 schema:givenName H.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011710531436.17
    89 rdf:type schema:Person
    90 sg:pub.10.1007/bf01304264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042559463
    91 https://doi.org/10.1007/bf01304264
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/bf01309287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002324729
    94 https://doi.org/10.1007/bf01309287
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/bf01309290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019548277
    97 https://doi.org/10.1007/bf01309290
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/bf01313839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019862541
    100 https://doi.org/10.1007/bf01313839
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bf01390654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024679356
    103 https://doi.org/10.1007/bf01390654
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/bf01453763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035992851
    106 https://doi.org/10.1007/bf01453763
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/bf01469695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017243540
    109 https://doi.org/10.1007/bf01469695
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/0550-3213(85)90374-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039458837
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1017/cbo9780511628771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098708991
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1051/jp1:1993183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056973966
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1103/physreva.29.2765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060471988
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1103/physrevb.25.6860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060530846
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1103/physrevb.36.5388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060544038
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1103/physrevlett.35.1792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060779672
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1103/physrevlett.47.935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060786921
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1103/physrevlett.58.2091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060794974
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1103/revmodphys.49.435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838858
    130 rdf:type schema:CreativeWork
    131 https://www.grid.ac/institutes/grid.5718.b schema:alternateName University of Duisburg-Essen
    132 schema:name Fachbereich Physik, Universität-Gesamthochschule Essen, D-4300, Essen 1, Germany
    133 rdf:type schema:Organization
    134 https://www.grid.ac/institutes/grid.7700.0 schema:alternateName Heidelberg University
    135 schema:name Institut für Theoretische Physik, Ruprecht-Karls-Universität, D-6900, Heidelberg, Germany
    136 rdf:type schema:Organization
    137 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
    138 schema:name Dipartimento di Fisica, Università di Roma “La Sapienza”, I-00185, Roma, Italy
    139 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...