Microscopic theory of charge-density wave systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1986-03

AUTHORS

U. Eckern, A. Geier

ABSTRACT

An effective action (in imaginary time) for the phase of the order parameter is derived using the path integral formulation of the microscopic theory. After analytic continuation, the classical equation of motion is derived. Dissipation is found to arise from impurity scattering and from the screened Coulomb interaction with normal electrons. Similarities to a recent theory of Josephson junctions are discussed. More... »

PAGES

15-27

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01308395

DOI

http://dx.doi.org/10.1007/bf01308395

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045008714


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Theorie der Kondensierten Materie, Universit\u00e4t Karlsruhe, Postfach 6980, D-7500, Karlsruhe 1, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institut f\u00fcr Theorie der Kondensierten Materie, Universit\u00e4t Karlsruhe, Postfach 6980, D-7500, Karlsruhe 1, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eckern", 
        "givenName": "U.", 
        "id": "sg:person.012657025101.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657025101.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Theorie der Kondensierten Materie, Universit\u00e4t Karlsruhe, Postfach 6980, D-7500, Karlsruhe 1, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institut f\u00fcr Theorie der Kondensierten Materie, Universit\u00e4t Karlsruhe, Postfach 6980, D-7500, Karlsruhe 1, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geier", 
        "givenName": "A.", 
        "id": "sg:person.013231155041.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013231155041.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00683409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012274480", 
          "https://doi.org/10.1007/bf00683409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01323428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048832588", 
          "https://doi.org/10.1007/bf01323428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-6923-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036475672", 
          "https://doi.org/10.1007/978-94-015-6923-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01307781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024954656", 
          "https://doi.org/10.1007/bf01307781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00681904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012106879", 
          "https://doi.org/10.1007/bf00681904"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1986-03", 
    "datePublishedReg": "1986-03-01", 
    "description": "An effective action (in imaginary time) for the phase of the order parameter is derived using the path integral formulation of the microscopic theory. After analytic continuation, the classical equation of motion is derived. Dissipation is found to arise from impurity scattering and from the screened Coulomb interaction with normal electrons. Similarities to a recent theory of Josephson junctions are discussed.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01308395", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1285002", 
        "issn": [
          "0722-3277", 
          "1431-584X"
        ], 
        "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "65"
      }
    ], 
    "keywords": [
      "microscopic theory", 
      "charge-density wave systems", 
      "path integral formulation", 
      "Coulomb interaction", 
      "normal electrons", 
      "classical equations", 
      "Josephson junctions", 
      "order parameter", 
      "wave system", 
      "integral formulation", 
      "analytic continuation", 
      "effective action", 
      "electrons", 
      "recent theories", 
      "theory", 
      "impurities", 
      "dissipation", 
      "equations", 
      "motion", 
      "phase", 
      "formulation", 
      "interaction", 
      "junctions", 
      "parameters", 
      "continuation", 
      "system", 
      "action", 
      "similarity"
    ], 
    "name": "Microscopic theory of charge-density wave systems", 
    "pagination": "15-27", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045008714"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01308395"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01308395", 
      "https://app.dimensions.ai/details/publication/pub.1045008714"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_198.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01308395"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01308395'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01308395'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01308395'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01308395'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      22 PREDICATES      59 URIs      46 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01308395 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N1bc32ad6cd13479ab8239fadc97aef32
4 schema:citation sg:pub.10.1007/978-94-015-6923-1
5 sg:pub.10.1007/bf00681904
6 sg:pub.10.1007/bf00683409
7 sg:pub.10.1007/bf01307781
8 sg:pub.10.1007/bf01323428
9 schema:datePublished 1986-03
10 schema:datePublishedReg 1986-03-01
11 schema:description An effective action (in imaginary time) for the phase of the order parameter is derived using the path integral formulation of the microscopic theory. After analytic continuation, the classical equation of motion is derived. Dissipation is found to arise from impurity scattering and from the screened Coulomb interaction with normal electrons. Similarities to a recent theory of Josephson junctions are discussed.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N465e0e196d0847a18e22135a2d7af88b
16 Nf5ce6c498dfb4330b2745b959d645143
17 sg:journal.1285002
18 schema:keywords Coulomb interaction
19 Josephson junctions
20 action
21 analytic continuation
22 charge-density wave systems
23 classical equations
24 continuation
25 dissipation
26 effective action
27 electrons
28 equations
29 formulation
30 impurities
31 integral formulation
32 interaction
33 junctions
34 microscopic theory
35 motion
36 normal electrons
37 order parameter
38 parameters
39 path integral formulation
40 phase
41 recent theories
42 similarity
43 system
44 theory
45 wave system
46 schema:name Microscopic theory of charge-density wave systems
47 schema:pagination 15-27
48 schema:productId N339bdd8f2ffd491b9762bd15336708b7
49 Ndbd3da15caa54818b8365230f4b162a4
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045008714
51 https://doi.org/10.1007/bf01308395
52 schema:sdDatePublished 2022-01-01T18:03
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N870de3d7363b47baa31db3a97d9806f6
55 schema:url https://doi.org/10.1007/bf01308395
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N1bc32ad6cd13479ab8239fadc97aef32 rdf:first sg:person.012657025101.49
60 rdf:rest Ne7b8a42cf1414abbb05918638feb38f4
61 N339bdd8f2ffd491b9762bd15336708b7 schema:name doi
62 schema:value 10.1007/bf01308395
63 rdf:type schema:PropertyValue
64 N465e0e196d0847a18e22135a2d7af88b schema:issueNumber 1
65 rdf:type schema:PublicationIssue
66 N870de3d7363b47baa31db3a97d9806f6 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Ndbd3da15caa54818b8365230f4b162a4 schema:name dimensions_id
69 schema:value pub.1045008714
70 rdf:type schema:PropertyValue
71 Ne7b8a42cf1414abbb05918638feb38f4 rdf:first sg:person.013231155041.26
72 rdf:rest rdf:nil
73 Nf5ce6c498dfb4330b2745b959d645143 schema:volumeNumber 65
74 rdf:type schema:PublicationVolume
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
79 schema:name Pure Mathematics
80 rdf:type schema:DefinedTerm
81 sg:journal.1285002 schema:issn 0722-3277
82 1431-584X
83 schema:name Zeitschrift für Physik B Condensed Matter
84 schema:publisher Springer Nature
85 rdf:type schema:Periodical
86 sg:person.012657025101.49 schema:affiliation grid-institutes:grid.7892.4
87 schema:familyName Eckern
88 schema:givenName U.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657025101.49
90 rdf:type schema:Person
91 sg:person.013231155041.26 schema:affiliation grid-institutes:grid.7892.4
92 schema:familyName Geier
93 schema:givenName A.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013231155041.26
95 rdf:type schema:Person
96 sg:pub.10.1007/978-94-015-6923-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036475672
97 https://doi.org/10.1007/978-94-015-6923-1
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf00681904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012106879
100 https://doi.org/10.1007/bf00681904
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf00683409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012274480
103 https://doi.org/10.1007/bf00683409
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf01307781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024954656
106 https://doi.org/10.1007/bf01307781
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf01323428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048832588
109 https://doi.org/10.1007/bf01323428
110 rdf:type schema:CreativeWork
111 grid-institutes:grid.7892.4 schema:alternateName Institut für Theorie der Kondensierten Materie, Universität Karlsruhe, Postfach 6980, D-7500, Karlsruhe 1, Germany
112 schema:name Institut für Theorie der Kondensierten Materie, Universität Karlsruhe, Postfach 6980, D-7500, Karlsruhe 1, Germany
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...