Ontology type: schema:ScholarlyArticle Open Access: True
1995-06
AUTHORSGregor Hackenbroich, Felix von Oppen
ABSTRACTMotivated by a recent experiment by Weiss et al. [Phys. Rev. Lett. 70, 4118 (1993)], we present a detailed study of quantum transport in large antidot arrays whose classical dynamics is chaotic. We calculate the longitudinal and Hall conductivities semiclassically starting from the Kubo formula. The leading contribution reproduces the classical conductivity. In addition, we find oscillatory quantum corrections to the classical conductivity which are given in terms of the periodic orbits of the system. These periodic-orbit contributions provide a consistent explanation of the quantum oscillations in the magnetoconductivity observed by Weiss et al. We find that the phase of the oscillations with Fermi energy and magnetic field is given by the classical action of the periodic orbit. The amplitude is determined by the stability and the velocity correlations of the orbit. The amplitude also decreases exponentially with temperature on the scale of the inverse orbit traversal timeħ/Tγ. The Zeeman splitting leads to beating of the amplitude with magnetic field. We also present an analogous semiclassical derivation of Shubnikov-de Haas oscillations where the corresponding classical motion is integrable. We show that the quantum oscillations in antidot lattices and the Shubnikov-de Haas oscillations are closely related. Observation of both effects requires that the elastic and inelastic scattering lengths be larger than the lengths of the relevant periodic orbits. The amplitude of the quantum oscillations in antidot lattices is of a higher power in Planck's constantħ and hence smaller than that of Shubnikov-de Haas oscillations. In this sense, the quantum oscillations in the conductivity are a sensitive probe of chaos. More... »
PAGES157-170
http://scigraph.springernature.com/pub.10.1007/bf01307466
DOIhttp://dx.doi.org/10.1007/bf01307466
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1050297696
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Max-Planck-Institut f\u00fcr Kernphysik, D-69117, Heidelberg, Germany",
"id": "http://www.grid.ac/institutes/grid.419604.e",
"name": [
"Max-Planck-Institut f\u00fcr Kernphysik, D-69117, Heidelberg, Germany"
],
"type": "Organization"
},
"familyName": "Hackenbroich",
"givenName": "Gregor",
"id": "sg:person.012241057077.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012241057077.14"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max-Planck-Institut f\u00fcr Kernphysik, D-69117, Heidelberg, Germany",
"id": "http://www.grid.ac/institutes/grid.419604.e",
"name": [
"Max-Planck-Institut f\u00fcr Kernphysik, D-69117, Heidelberg, Germany"
],
"type": "Organization"
},
"familyName": "von Oppen",
"givenName": "Felix",
"id": "sg:person.01366036711.96",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366036711.96"
],
"type": "Person"
}
],
"datePublished": "1995-06",
"datePublishedReg": "1995-06-01",
"description": "Motivated by a recent experiment by Weiss et al. [Phys. Rev. Lett. 70, 4118 (1993)], we present a detailed study of quantum transport in large antidot arrays whose classical dynamics is chaotic. We calculate the longitudinal and Hall conductivities semiclassically starting from the Kubo formula. The leading contribution reproduces the classical conductivity. In addition, we find oscillatory quantum corrections to the classical conductivity which are given in terms of the periodic orbits of the system. These periodic-orbit contributions provide a consistent explanation of the quantum oscillations in the magnetoconductivity observed by Weiss et al. We find that the phase of the oscillations with Fermi energy and magnetic field is given by the classical action of the periodic orbit. The amplitude is determined by the stability and the velocity correlations of the orbit. The amplitude also decreases exponentially with temperature on the scale of the inverse orbit traversal time\u0127/T\u03b3. The Zeeman splitting leads to beating of the amplitude with magnetic field. We also present an analogous semiclassical derivation of Shubnikov-de Haas oscillations where the corresponding classical motion is integrable. We show that the quantum oscillations in antidot lattices and the Shubnikov-de Haas oscillations are closely related. Observation of both effects requires that the elastic and inelastic scattering lengths be larger than the lengths of the relevant periodic orbits. The amplitude of the quantum oscillations in antidot lattices is of a higher power in Planck's constant\u0127 and hence smaller than that of Shubnikov-de Haas oscillations. In this sense, the quantum oscillations in the conductivity are a sensitive probe of chaos.",
"genre": "article",
"id": "sg:pub.10.1007/bf01307466",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1285002",
"issn": [
"0722-3277",
"1431-584X"
],
"name": "Zeitschrift f\u00fcr Physik B Condensed Matter",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "97"
}
],
"keywords": [
"Shubnikov-de Haas oscillations",
"quantum oscillations",
"Haas oscillations",
"antidot lattices",
"classical conductivity",
"periodic orbits",
"magnetic field",
"corresponding classical motion",
"inelastic scattering length",
"periodic orbit contributions",
"quantum transport",
"Zeeman splitting",
"classical motion",
"quantum corrections",
"classical dynamics",
"Fermi energy",
"semiclassical theory",
"scattering length",
"Weiss et al",
"semiclassical derivation",
"antidot arrays",
"sensitive probe",
"Kubo formula",
"recent experiments",
"classical action",
"consistent explanation",
"orbit",
"velocity correlations",
"high power",
"oscillations",
"lattice",
"et al",
"detailed study",
"amplitude",
"magnetoconductivity",
"field",
"splitting",
"chaos",
"conductivity",
"energy",
"derivation",
"transport",
"al",
"beating",
"Hall",
"motion",
"theory",
"probe",
"formula",
"dynamics",
"array",
"T\u03b3",
"correction",
"temperature",
"contribution",
"phase",
"power",
"length",
"experiments",
"terms",
"sense",
"system",
"stability",
"explanation",
"scale",
"observations",
"correlation",
"effect",
"addition",
"action",
"study"
],
"name": "Semiclassical theory of transport in antidot lattices",
"pagination": "157-170",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1050297696"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf01307466"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf01307466",
"https://app.dimensions.ai/details/publication/pub.1050297696"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:52",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_269.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf01307466"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01307466'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01307466'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01307466'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01307466'
This table displays all metadata directly associated to this object as RDF triples.
135 TRIPLES
20 PREDICATES
96 URIs
88 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf01307466 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | schema:author | N448405b749024b49ae96f00254749fe2 |
4 | ″ | schema:datePublished | 1995-06 |
5 | ″ | schema:datePublishedReg | 1995-06-01 |
6 | ″ | schema:description | Motivated by a recent experiment by Weiss et al. [Phys. Rev. Lett. 70, 4118 (1993)], we present a detailed study of quantum transport in large antidot arrays whose classical dynamics is chaotic. We calculate the longitudinal and Hall conductivities semiclassically starting from the Kubo formula. The leading contribution reproduces the classical conductivity. In addition, we find oscillatory quantum corrections to the classical conductivity which are given in terms of the periodic orbits of the system. These periodic-orbit contributions provide a consistent explanation of the quantum oscillations in the magnetoconductivity observed by Weiss et al. We find that the phase of the oscillations with Fermi energy and magnetic field is given by the classical action of the periodic orbit. The amplitude is determined by the stability and the velocity correlations of the orbit. The amplitude also decreases exponentially with temperature on the scale of the inverse orbit traversal timeħ/Tγ. The Zeeman splitting leads to beating of the amplitude with magnetic field. We also present an analogous semiclassical derivation of Shubnikov-de Haas oscillations where the corresponding classical motion is integrable. We show that the quantum oscillations in antidot lattices and the Shubnikov-de Haas oscillations are closely related. Observation of both effects requires that the elastic and inelastic scattering lengths be larger than the lengths of the relevant periodic orbits. The amplitude of the quantum oscillations in antidot lattices is of a higher power in Planck's constantħ and hence smaller than that of Shubnikov-de Haas oscillations. In this sense, the quantum oscillations in the conductivity are a sensitive probe of chaos. |
7 | ″ | schema:genre | article |
8 | ″ | schema:isAccessibleForFree | true |
9 | ″ | schema:isPartOf | N8e2e54bc67d145b19ecc1fe95c69bbb2 |
10 | ″ | ″ | Nbf09d96e52214cefabf73d5c12c11445 |
11 | ″ | ″ | sg:journal.1285002 |
12 | ″ | schema:keywords | Fermi energy |
13 | ″ | ″ | Haas oscillations |
14 | ″ | ″ | Hall |
15 | ″ | ″ | Kubo formula |
16 | ″ | ″ | Shubnikov-de Haas oscillations |
17 | ″ | ″ | Tγ |
18 | ″ | ″ | Weiss et al |
19 | ″ | ″ | Zeeman splitting |
20 | ″ | ″ | action |
21 | ″ | ″ | addition |
22 | ″ | ″ | al |
23 | ″ | ″ | amplitude |
24 | ″ | ″ | antidot arrays |
25 | ″ | ″ | antidot lattices |
26 | ″ | ″ | array |
27 | ″ | ″ | beating |
28 | ″ | ″ | chaos |
29 | ″ | ″ | classical action |
30 | ″ | ″ | classical conductivity |
31 | ″ | ″ | classical dynamics |
32 | ″ | ″ | classical motion |
33 | ″ | ″ | conductivity |
34 | ″ | ″ | consistent explanation |
35 | ″ | ″ | contribution |
36 | ″ | ″ | correction |
37 | ″ | ″ | correlation |
38 | ″ | ″ | corresponding classical motion |
39 | ″ | ″ | derivation |
40 | ″ | ″ | detailed study |
41 | ″ | ″ | dynamics |
42 | ″ | ″ | effect |
43 | ″ | ″ | energy |
44 | ″ | ″ | et al |
45 | ″ | ″ | experiments |
46 | ″ | ″ | explanation |
47 | ″ | ″ | field |
48 | ″ | ″ | formula |
49 | ″ | ″ | high power |
50 | ″ | ″ | inelastic scattering length |
51 | ″ | ″ | lattice |
52 | ″ | ″ | length |
53 | ″ | ″ | magnetic field |
54 | ″ | ″ | magnetoconductivity |
55 | ″ | ″ | motion |
56 | ″ | ″ | observations |
57 | ″ | ″ | orbit |
58 | ″ | ″ | oscillations |
59 | ″ | ″ | periodic orbit contributions |
60 | ″ | ″ | periodic orbits |
61 | ″ | ″ | phase |
62 | ″ | ″ | power |
63 | ″ | ″ | probe |
64 | ″ | ″ | quantum corrections |
65 | ″ | ″ | quantum oscillations |
66 | ″ | ″ | quantum transport |
67 | ″ | ″ | recent experiments |
68 | ″ | ″ | scale |
69 | ″ | ″ | scattering length |
70 | ″ | ″ | semiclassical derivation |
71 | ″ | ″ | semiclassical theory |
72 | ″ | ″ | sense |
73 | ″ | ″ | sensitive probe |
74 | ″ | ″ | splitting |
75 | ″ | ″ | stability |
76 | ″ | ″ | study |
77 | ″ | ″ | system |
78 | ″ | ″ | temperature |
79 | ″ | ″ | terms |
80 | ″ | ″ | theory |
81 | ″ | ″ | transport |
82 | ″ | ″ | velocity correlations |
83 | ″ | schema:name | Semiclassical theory of transport in antidot lattices |
84 | ″ | schema:pagination | 157-170 |
85 | ″ | schema:productId | N3b218785b79840868068d7e5ae3d8275 |
86 | ″ | ″ | N9dfda26441c04a39b1844407d4c61a67 |
87 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1050297696 |
88 | ″ | ″ | https://doi.org/10.1007/bf01307466 |
89 | ″ | schema:sdDatePublished | 2022-08-04T16:52 |
90 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
91 | ″ | schema:sdPublisher | Nb62cef1e225f42c480cfd1e43490a830 |
92 | ″ | schema:url | https://doi.org/10.1007/bf01307466 |
93 | ″ | sgo:license | sg:explorer/license/ |
94 | ″ | sgo:sdDataset | articles |
95 | ″ | rdf:type | schema:ScholarlyArticle |
96 | N3b218785b79840868068d7e5ae3d8275 | schema:name | dimensions_id |
97 | ″ | schema:value | pub.1050297696 |
98 | ″ | rdf:type | schema:PropertyValue |
99 | N448405b749024b49ae96f00254749fe2 | rdf:first | sg:person.012241057077.14 |
100 | ″ | rdf:rest | Ncc018e5e31a24026a2f38588d895cf39 |
101 | N8e2e54bc67d145b19ecc1fe95c69bbb2 | schema:volumeNumber | 97 |
102 | ″ | rdf:type | schema:PublicationVolume |
103 | N9dfda26441c04a39b1844407d4c61a67 | schema:name | doi |
104 | ″ | schema:value | 10.1007/bf01307466 |
105 | ″ | rdf:type | schema:PropertyValue |
106 | Nb62cef1e225f42c480cfd1e43490a830 | schema:name | Springer Nature - SN SciGraph project |
107 | ″ | rdf:type | schema:Organization |
108 | Nbf09d96e52214cefabf73d5c12c11445 | schema:issueNumber | 2 |
109 | ″ | rdf:type | schema:PublicationIssue |
110 | Ncc018e5e31a24026a2f38588d895cf39 | rdf:first | sg:person.01366036711.96 |
111 | ″ | rdf:rest | rdf:nil |
112 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Physical Sciences |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | sg:journal.1285002 | schema:issn | 0722-3277 |
119 | ″ | ″ | 1431-584X |
120 | ″ | schema:name | Zeitschrift für Physik B Condensed Matter |
121 | ″ | schema:publisher | Springer Nature |
122 | ″ | rdf:type | schema:Periodical |
123 | sg:person.012241057077.14 | schema:affiliation | grid-institutes:grid.419604.e |
124 | ″ | schema:familyName | Hackenbroich |
125 | ″ | schema:givenName | Gregor |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012241057077.14 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.01366036711.96 | schema:affiliation | grid-institutes:grid.419604.e |
129 | ″ | schema:familyName | von Oppen |
130 | ″ | schema:givenName | Felix |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366036711.96 |
132 | ″ | rdf:type | schema:Person |
133 | grid-institutes:grid.419604.e | schema:alternateName | Max-Planck-Institut für Kernphysik, D-69117, Heidelberg, Germany |
134 | ″ | schema:name | Max-Planck-Institut für Kernphysik, D-69117, Heidelberg, Germany |
135 | ″ | rdf:type | schema:Organization |