Direct perturbations of the planets on the Moon's motion View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1980-11

AUTHORS

D. Standaert

ABSTRACT

The aim of the present paper is to present the theoretical background of a method to compute the planetary perturbations on the Moon's motion. We formulate an algorithm based upon the Lie transform method and well-suited to the particular problem at hand. This algorithm is being implemented using Henrard's Semi-Analytical Lunar Ephemeris (SALE) as solution of the Main Problem and Bretagnon's planetary theory. The accuracy of the solution is intended to be about 0".001 for terms of period up to 2000 years. To illustrate the interest of our approach, we comment on some preliminary results obtained about the direct perturbations due to Venus on the Moon's longitude. The final results will be the subject of another paper. More... »

PAGES

357-369

References to SciGraph publications

  • 1978. Discussion sur les Resultats de Theories Planetaiers in DYNAMICS OF PLANETS AND SATELLITES AND THEORIES OF THEIR MOTION
  • 1969-03. Canonical transformations depending on a small parameter in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1979-05. A new solution to the Main Problem of Lunar Theory in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1978-02. Hill's Problem in lunar theory in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01306910

    DOI

    http://dx.doi.org/10.1007/bf01306910

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042021723


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Theoretical and Computational Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Namur", 
              "id": "https://www.grid.ac/institutes/grid.6520.1", 
              "name": [
                "Department of Mathematics, Facult\u00e9s Universitaires de Namur, 8 Rempart de la Vierge, B-5000, Namur, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Standaert", 
            "givenName": "D.", 
            "id": "sg:person.011022456231.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011022456231.44"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-94-009-9809-4_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002375322", 
              "https://doi.org/10.1007/978-94-009-9809-4_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01231013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026641758", 
              "https://doi.org/10.1007/bf01231013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01231013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026641758", 
              "https://doi.org/10.1007/bf01231013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028918192", 
              "https://doi.org/10.1007/bf01230629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028918192", 
              "https://doi.org/10.1007/bf01230629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01371331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048546236", 
              "https://doi.org/10.1007/bf01371331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01371331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048546236", 
              "https://doi.org/10.1007/bf01371331"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1980-11", 
        "datePublishedReg": "1980-11-01", 
        "description": "The aim of the present paper is to present the theoretical background of a method to compute the planetary perturbations on the Moon's motion. We formulate an algorithm based upon the Lie transform method and well-suited to the particular problem at hand. This algorithm is being implemented using Henrard's Semi-Analytical Lunar Ephemeris (SALE) as solution of the Main Problem and Bretagnon's planetary theory. The accuracy of the solution is intended to be about 0\".001 for terms of period up to 2000 years. To illustrate the interest of our approach, we comment on some preliminary results obtained about the direct perturbations due to Venus on the Moon's longitude. The final results will be the subject of another paper.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01306910", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0008-8714", 
              "0923-2958"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "22"
          }
        ], 
        "name": "Direct perturbations of the planets on the Moon's motion", 
        "pagination": "357-369", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c82bd31c92e831ba26c29019bc5f8f8ef61e4661870e5f4b6031e466e05e683e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01306910"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042021723"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01306910", 
          "https://app.dimensions.ai/details/publication/pub.1042021723"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46738_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01306910"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01306910'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01306910'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01306910'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01306910'


     

    This table displays all metadata directly associated to this object as RDF triples.

    77 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01306910 schema:about anzsrc-for:03
    2 anzsrc-for:0307
    3 schema:author Nfea6f03b07b144f4884c1939a5701056
    4 schema:citation sg:pub.10.1007/978-94-009-9809-4_8
    5 sg:pub.10.1007/bf01230629
    6 sg:pub.10.1007/bf01231013
    7 sg:pub.10.1007/bf01371331
    8 schema:datePublished 1980-11
    9 schema:datePublishedReg 1980-11-01
    10 schema:description The aim of the present paper is to present the theoretical background of a method to compute the planetary perturbations on the Moon's motion. We formulate an algorithm based upon the Lie transform method and well-suited to the particular problem at hand. This algorithm is being implemented using Henrard's Semi-Analytical Lunar Ephemeris (SALE) as solution of the Main Problem and Bretagnon's planetary theory. The accuracy of the solution is intended to be about 0".001 for terms of period up to 2000 years. To illustrate the interest of our approach, we comment on some preliminary results obtained about the direct perturbations due to Venus on the Moon's longitude. The final results will be the subject of another paper.
    11 schema:genre research_article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N1630a00e6ce84fd3a9a1d24e904cbbbe
    15 Nbbc15565c2684fe492d4159d78c5072d
    16 sg:journal.1136436
    17 schema:name Direct perturbations of the planets on the Moon's motion
    18 schema:pagination 357-369
    19 schema:productId N32458ec1848f4618bada09990ab09429
    20 Nc2ae182808ab4403ac0c3fb2eba24053
    21 Nd44bb53a43c3466d8d816b78cc16d7bc
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042021723
    23 https://doi.org/10.1007/bf01306910
    24 schema:sdDatePublished 2019-04-11T13:27
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N68f6fcf14fc342a6926d581b1ce056d7
    27 schema:url http://link.springer.com/10.1007/BF01306910
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset articles
    30 rdf:type schema:ScholarlyArticle
    31 N1630a00e6ce84fd3a9a1d24e904cbbbe schema:issueNumber 4
    32 rdf:type schema:PublicationIssue
    33 N32458ec1848f4618bada09990ab09429 schema:name dimensions_id
    34 schema:value pub.1042021723
    35 rdf:type schema:PropertyValue
    36 N68f6fcf14fc342a6926d581b1ce056d7 schema:name Springer Nature - SN SciGraph project
    37 rdf:type schema:Organization
    38 Nbbc15565c2684fe492d4159d78c5072d schema:volumeNumber 22
    39 rdf:type schema:PublicationVolume
    40 Nc2ae182808ab4403ac0c3fb2eba24053 schema:name doi
    41 schema:value 10.1007/bf01306910
    42 rdf:type schema:PropertyValue
    43 Nd44bb53a43c3466d8d816b78cc16d7bc schema:name readcube_id
    44 schema:value c82bd31c92e831ba26c29019bc5f8f8ef61e4661870e5f4b6031e466e05e683e
    45 rdf:type schema:PropertyValue
    46 Nfea6f03b07b144f4884c1939a5701056 rdf:first sg:person.011022456231.44
    47 rdf:rest rdf:nil
    48 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    49 schema:name Chemical Sciences
    50 rdf:type schema:DefinedTerm
    51 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
    52 schema:name Theoretical and Computational Chemistry
    53 rdf:type schema:DefinedTerm
    54 sg:journal.1136436 schema:issn 0008-8714
    55 0923-2958
    56 schema:name Celestial Mechanics and Dynamical Astronomy
    57 rdf:type schema:Periodical
    58 sg:person.011022456231.44 schema:affiliation https://www.grid.ac/institutes/grid.6520.1
    59 schema:familyName Standaert
    60 schema:givenName D.
    61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011022456231.44
    62 rdf:type schema:Person
    63 sg:pub.10.1007/978-94-009-9809-4_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002375322
    64 https://doi.org/10.1007/978-94-009-9809-4_8
    65 rdf:type schema:CreativeWork
    66 sg:pub.10.1007/bf01230629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028918192
    67 https://doi.org/10.1007/bf01230629
    68 rdf:type schema:CreativeWork
    69 sg:pub.10.1007/bf01231013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026641758
    70 https://doi.org/10.1007/bf01231013
    71 rdf:type schema:CreativeWork
    72 sg:pub.10.1007/bf01371331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048546236
    73 https://doi.org/10.1007/bf01371331
    74 rdf:type schema:CreativeWork
    75 https://www.grid.ac/institutes/grid.6520.1 schema:alternateName University of Namur
    76 schema:name Department of Mathematics, Facultés Universitaires de Namur, 8 Rempart de la Vierge, B-5000, Namur, Belgium
    77 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...