Ontology type: schema:ScholarlyArticle
1988-06
AUTHORSE. Tosatti, M. Zannetti, L. Pietronero
ABSTRACTWe examine the nature and properties of the “exponentiated random walk” one-dimensional wavefunction Ψ0=exp[−x(x)], previously introduced in the context of the supersymmetric mappings of a classical Langevin random field problem. Three main results are presented. The first is that the state Ψ0 is extended, although it is the exact groundstate of a disordered one-dimensional quantum problem. The second is that in that problem supersymmetry is neither truly unbroken, or truly broken, we call this a situation of marginal unbroken supersymmetry and identify a class of other problems with the same property. The third result is obtained by studying the local behaviour of the wave function Ψ0 by means of generalized Lyapunov exponents. Locally, Ψ0 exhibits exponential localization, with a localization length identical to that of weak localization in the 1-dimensional Anderson problem. More... »
PAGES161-166
http://scigraph.springernature.com/pub.10.1007/bf01305733
DOIhttp://dx.doi.org/10.1007/bf01305733
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1053234008
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "International School for Advanced Studies, Strada Costiera 11, I-34100, Trieste, Italy",
"id": "http://www.grid.ac/institutes/grid.5970.b",
"name": [
"International School for Advanced Studies, Strada Costiera 11, I-34100, Trieste, Italy"
],
"type": "Organization"
},
"familyName": "Tosatti",
"givenName": "E.",
"id": "sg:person.01206203021.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206203021.80"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Dipartimento di Fisica, Universit\u00e0 di Salerno, I-84100, Salerno, Italy",
"id": "http://www.grid.ac/institutes/grid.11780.3f",
"name": [
"Dipartimento di Fisica, Universit\u00e0 di Salerno, I-84100, Salerno, Italy"
],
"type": "Organization"
},
"familyName": "Zannetti",
"givenName": "M.",
"id": "sg:person.0763640651.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763640651.14"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Dipartimento di Fisica, Universit\u00e0 di Roma \u201cLa Sapienza\u201d, Piazzale Aldo Moro 2, I-00100, Roma, Italy",
"id": "http://www.grid.ac/institutes/grid.7841.a",
"name": [
"Dipartimento di Fisica, Universit\u00e0 di Roma \u201cLa Sapienza\u201d, Piazzale Aldo Moro 2, I-00100, Roma, Italy"
],
"type": "Organization"
},
"familyName": "Pietronero",
"givenName": "L.",
"id": "sg:person.016205211111.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016205211111.31"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-642-96807-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000578773",
"https://doi.org/10.1007/978-3-642-96807-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01303729",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052073149",
"https://doi.org/10.1007/bf01303729"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-11192-1_4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037288381",
"https://doi.org/10.1007/3-540-11192-1_4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01942371",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000362893",
"https://doi.org/10.1007/bf01942371"
],
"type": "CreativeWork"
}
],
"datePublished": "1988-06",
"datePublishedReg": "1988-06-01",
"description": "We examine the nature and properties of the \u201cexponentiated random walk\u201d one-dimensional wavefunction \u03a80=exp[\u2212x(x)], previously introduced in the context of the supersymmetric mappings of a classical Langevin random field problem. Three main results are presented. The first is that the state \u03a80 is extended, although it is the exact groundstate of a disordered one-dimensional quantum problem. The second is that in that problem supersymmetry is neither truly unbroken, or truly broken, we call this a situation of marginal unbroken supersymmetry and identify a class of other problems with the same property. The third result is obtained by studying the local behaviour of the wave function \u03a80 by means of generalized Lyapunov exponents. Locally, \u03a80 exhibits exponential localization, with a localization length identical to that of weak localization in the 1-dimensional Anderson problem.",
"genre": "article",
"id": "sg:pub.10.1007/bf01305733",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1285002",
"issn": [
"0722-3277",
"1431-584X"
],
"name": "Zeitschrift f\u00fcr Physik B Condensed Matter",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "73"
}
],
"keywords": [
"random walk",
"one-dimensional quantum problem",
"random field problem",
"generalized Lyapunov exponents",
"quantum problem",
"unbroken supersymmetry",
"field problems",
"Lyapunov exponents",
"exact groundstate",
"Anderson problem",
"exponential localization",
"weak localization",
"localization length",
"supersymmetry",
"local behavior",
"\u03c80",
"third result",
"walk",
"main results",
"same properties",
"problem",
"groundstate",
"exponent",
"properties",
"class",
"results",
"means",
"mapping",
"behavior",
"situation",
"length",
"nature",
"localization",
"context"
],
"name": "Exponentiated random walks, supersymmetry and localization",
"pagination": "161-166",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1053234008"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf01305733"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf01305733",
"https://app.dimensions.ai/details/publication/pub.1053234008"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:42",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_204.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf01305733"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01305733'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01305733'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01305733'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01305733'
This table displays all metadata directly associated to this object as RDF triples.
128 TRIPLES
22 PREDICATES
64 URIs
52 LITERALS
6 BLANK NODES